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1 Executive Summary 
 

WorkPackage 4 (WP4) deals with the tasks related to robot localization and 
navigation, avoiding the potential obstacles existing on the streets and public areas. 
This document is the first deliverable issued within WP4, two months after the start of 
activities in this workpackage. Its aim is to offer a clear view of the available devices, 
methodologies and algorithms related to obstacle detection and avoidance, and robot 
localization and navigation. This deliverable D8 “Report on the state of the art analysis 
on navigation and obstacle avoidance methodologies” includes the actual state of art 
regarding the technologies, methods and algorithms applied for those purposes. 

Chapter 2 is focused on obstacle avoidance. This task will be carried out at two 
levels within the DustBot controller. The high-level controller performs global obstacle 
avoidance in the sense that it plans obstacle-free paths based on the available 
representation of the environment. The low-level controller uses the current sensory 
information from the obstacle avoidance sensory system and performs reactive 
navigation, which is crucial in a non-static environment where the map cannot 
represent all the obstacles. The chapter includes a description of the available devices 
and technologies for obstacle detection (different types of cameras, infrared sensors, 
microwave radar, laser scanner, ultrasonic sensor) and the results obtained from first 
tests carried out.  

A complete list of methodologies and algorithms for obstacle avoidance are also 
explained. Their challenge is to use real-time data from the obstacle detection 
hardware, calculate a safe trajectory to avoid collision with the obstacle and assure to 
reach the globally defined goal position.   

First, some algorithms for local path planning are explained: Artificial Potential 
Field, Virtual Force Field (VFF), Fuzzy Controller, Vector Field Histogram (VFH). They 
do not attempt to find an optimal path, a task that has to be performed by a global 
path planner. Furthermore, the robot may get trapped in dead-end situations. In 
order to solve that problem, improved algorithms have been proposed and are also 
described in this chapter: VFH+ (it still is a local planner, but with better trajectory 
generation), VFH* (it adopts a look-ahead verification by projecting the trajectory of 
the robot several steps ahead and evaluating the consequences), Traversability Field 
Histogram (TFH, applied to a Segway platform). Other methods take into account the 
dynamic and cinematic features of the robot (Dynamic Window Approach, Curvature 
Velocity Space, Beam Curvature). Other types of algorithms are represented by the 
Nearness Diagram navigation methods (ND and ND+). 

Chapter 3 is devoted to robot localization and navigation. An accurate 
measurement of absolute position attitude and velocity of robots is mandatory for 
implementing correct robot movements and path planning tasks. When attempting to 
determine the absolute location, the choice is usually done within three major 
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techniques: triangulation (using the geometric properties of the triangle to compute 
object locations), proximity (measuring the nearness to a known set of points), scene 
analysis (uses the features of a scene observed from a particular vantage point to 
extract the location). Location system implementations generally use one or more of 
these techniques to locate robots, objects and people.  

The main characteristic to take into account analyzing the different typologies of 
localization systems are the physical position (difference between the numerical and 
the descriptive representation), absolute or relative position, accuracy and precision,  
location emission, area covered, cost and limitations. 

Several types of localization methods are explained and discussed: GPS (Global 
Positioning System based on satellite signals), Active badge (based on infrared 
technology, improved later on with Active Bat), Cricket (using ultrasound technology), 
RADAR (measuring the signal strength and signal-to-noise ratio of signals that 
wireless devices send), electromagnetic sensing, computer vision using 3D cameras 
for stereovision, pressure sensors embedded on floor, and location measurement by 
means of  objects cooperating with other nearby objects (by sharing sensor data to 
factor out overall measurement). 

Finally, a section dedicated to navigation algorithms covers a list of existing 
methods. In general, in path planning there are two situations: sometimes the mobile 
robot has to go from one point to a goal, while in other cases it has to cover or sweep 
all the area. Different conventional approaches have been developed to solve path 
planning problems, such as cell decomposition, road map and potential field. Most of 
these approaches are based on the configuration space concept. Conventional 
approaches are not suitable for dynamic environments because they utilize a 
sequential search algorithm to generate a single solution. This solution may become 
infeasible when a change in the environment is detected and a new solution has to be 
generated from scratch. To overcome the weakness of these approaches, researchers 
have been trying to apply other techniques to solve this problem. This situation has 
led to search new purely random planning methods to get a solution faster. This 
section of the document describes the Genetic Algorithm, different versions of 
Random Planning algorithms (RRT, Rapidly Exploring Random Trees), D* Algorithm, 
Gradient method, real-Time Visual Behaviour, sensor based navigation, the 
Boustrophedon cellular Decomposition and the Minimal Sum of Altitudes (MSA) 
Decomposition. 

 

2 Obstacle detection and avoidance 
In order to operate in outdoor environments the robot must be equipped with a 

high performance sensor system to gather the required information. This system must 
be non-contact, and must meet the requirements concerning the authorized standards 
(mainly the safety standard EN50100-1), in order for the robot to be sold with 
conformity to the Machinery Directive. 
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Currently several types of sensors (laser scanner and ultrasound, for example) 
meet these requirements and are acceptable for mobile robots. The obstacle 
avoidance sensory system should be technically diverse and redundant. 

Obstacle avoidance will be carried out at two levels within the DustBot controller. 
The high-level controller performs global obstacle avoidance in the sense that this 
instance plans obstacle-free paths based on the available representation of the 
environment. The low-level controller uses the current sensory information from the 
obstacle avoidance sensory system and performs reactive navigation, which is crucial 
in a non-static environment where the map cannot represent all the obstacles. 

While the high-level controller typically needs to react to asynchronous events 
(the arrival of a path or coverage request or an update of the map representation), 
the low-level controller needs constant updates upon the arrival of new sensor 
readings and gives control commands to the robot to avoid dynamic obstacles. 

Obstacle avoidance in DustBot should also deal with constraints typical of outdoor 
environments, such as pavements, steps, slopes or descents; their presence will be 
detected by using the sensory systems. These obstacles may not be represented in 
the maps, and can be static or changing over the time. It is very important to place 
the sensors correctly in the robot. The obstacles must be detected to avoid the impact 
with them. This is the reason why non-contact sensors will be used. 

All the perimeter of the DustBot will be sensorised, and redundancy in the 
information is necessary. It is important to avoid missing to detect obstacles. False 
detections are of less importance although care has to be taken to prevent the robot 
from stopping periodically to avoid contact with non-existing obstacles. 

The exact location to place the sensors depends on the type of sensors and their 
range of detection. Some sensors will be oriented to the floor, downwards, in order to 
detect slopes, steps or descents and other ones will be oriented forwards to detect 
other static objects in general or obstacles in movement, like pedestrians and cyclist, 
for example. 

 

2.1 Technologies for obstacle detection 

The obstacle avoidance system will be able to detect obstacles and to know the 
fundamental characteristics of them like, for example, their dimensions or whether 
they are moving, so the detection system might identify, if possible, the type of 
object. In order to detect objects in a non-contact way, sensors of different 
technologies may be used. 
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2.1.1 Vision sensors 

The most common are cameras using CCD arrays. The images taken with the CCD 
cameras will be compared to the ideal stage (without obstacles) of the maps. In this 
way obstacles can be detected and if pattern recognition techniques are used these 
obstacles can be identified. These techniques are very complex and have a high 
computational cost, particularly in the case of a moving camera. 

The use of several cameras and stereo vision techniques gives information about 
the position the object relative to the DustBot. 

Vision sensors are sensitive to light changes which may cause problems for mobile 
platforms. DustBot is a mobile platform, so complementary information is necessary. 
This information will be given by a system of video cameras located along the square 
and street for robot localization and surveillance of the environment status like it is 
explained in the proposal document (page 5). 

 

2.1.2 Active infrared sensors 

They can detect objects according to the angle of the infrared wave echo received. 
Some of them only detect objects that are nearer than 30cm, others are working for 
higher distances and are even able to determine the position of the object. 
Nevertheless, the ranges of detection hardly exceed one meter, and this fact limits the 
distance for the actuation of the robot in order to rectify the trajectory, mainly if the 
object is in movement too. 

 

2.1.3 Passive infrared sensors 

Thermal infrared sensors detect objects according to the heat they emit. They are 
useful for detecting pedestrians with pattern recognition techniques, though compared 
to vision sensors they tend to have lower resolution. They also are sensitive to high 
frequency intensity changes, and offer correct detections and a low number of false 
detections. 

The problem is their high cost and that they cannot measure distances. They only 
detect motion and its direction. 

2.1.4 Microwaves radar sensors 

They are used to detect objects in short distances. Several sensors are used to 
measure distances using triangulation techniques. With the analysis of the wave that 
is reflected in the object some information about it can be obtained. The power 
spectral density of the reflected wave gives information about the dimensions and the 
dynamics of the obstacle (smaller dimensions involve narrower peaks). The reflectivity 
depends on the type of material. The time to reflection gives the distance to the 
object, the frequency of the reflected wave gives the velocity and the difference in 
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phase among the sent wave and the received one gives the angle with respect to the 
object. 

 

2.1.5 Laser scanners (or laser range finders) 

They can detect objects as far as 40 m with an accuracy of only ±5 cm in a 180º 
field. They are fast in response, accurate, comparatively reliable in the presence of 
smoke or dust and insensitive to light changes. They detect objects with at least a 5% 
of reflectivity (almost everything). With these sensors information about the shape of 
the object, the distance to the object and its relative velocity can be obtained. They 
allow to obtain an echo from an object with remission value (the remission value 
depends on texture, colour and reflectivity), which helps to identify the object. The 
most commonly used laser scanners nowadays are 2D sensors. A severe drawback of 
2D range scanners is that they are “blind” for obstacles that do not appear in the 
perceived plane. Therefore, 3D laser scanners are more and more used in mobile 
robotics. Nowadays these 3D laser range scanners consist of a 2D laser range scanner 
mounted on a pan/tilt unit, which typically means that the robot has to be stopped in 
order to make a 3D scan. However, laser range scanners that measure in more than 
just a single plane are available or are currently being developed (example: SICK 
scanner with several fixed planes).  

 

2.1.6 Time-of-flight cameras 

An alternative to 3D laser scanners is provided by time-of-flight (TOF) cameras. 
This sensor is based on CMOS technology and offers depth measurements for each 
pixel. TOF cameras are active sensors in that the scene is illuminated with modulated 
infrared light. Depth measurements are obtained (without scanning) by measuring the 
phase shift in each pixel (Ringbeck et al., 2007). Current TOF cameras such as the 
Photon Mixer Device (PMD) provide intensity and depth measurements with a maximal 
resolution of 160×120 pixels (19k PMD) up to an unambiguous range of 7.5 m at a 
frequency of 15-30 Hz. The nominal depth resolution is specified as 6 mm. 

TOF cameras have the potential to become a standard sensor for mobile robots 
due to the large amount of 3D data they can deliver in real-time and because they are 
based on relatively inexpensive CMOS technology. The currently rather poor resolution 
can be increased by using data fusion with a standard CMOS camera (Andreasson et 
al., 2006; Jenke et al., 2007). Since they rely on active illumination, TOF cameras 
face problems with bright sunlight (with sophisticated background light suppression 
techniques, outdoor operation is possible to some degree, however) and the sensor 
technology is not yet fully mature. 
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2.1.7 Ultrasonic range sensors (sonar) 

They use the same operation principle as laser scanners. They are cheaper, but 
less accurate. They also may present some drawbacks: potential interferences with 
the environment or with the multiple sensors of the robot (crosstalk), false responses 
due to specular reflections or porous surfaces of the obstacle, dependence on 
temperature and humidity, comparatively small range capacity due to a signal loss of 
approximately 0.06 dB/m for a 20 KHz signal (double loss if the reflected wave is 
measured), and low angular resolution because of the difficulty to focus a sound 
beam. This could be a drawback if detailed 3D modelling of the obstacles was 
necessary, but it is not the case for the application considered here. 

 

2.2 Test on sensors and results 

As a low cost and powerful solution for object detection several active infrared 
sensors as well as ultrasonic sensors have been evaluated. Their range and accuracy 
are enough for the DustBot requirements. 

Regarding the infrared sensors, both digital as well as analogue sensors with 
different distance ranges have been considered. 

For test purposes, 3 digital sensors for short range object detection have been 
tested: 

 Sharp GP2D15 (5-25 cm) 

 Sharp GP2Y0D340K (5-40 cm) 

 Sharp GP2Y0D02YK (5-80 cm)  

In order to verify whether the sensors are insensitive to changing object’s 
materials and surface textures, several experiments have been performed with clothes 
worn by humans, a square wooden pole (10 x 10 cm), a metal cylinder (steel), a 
stone and a plastic trash can. 

The results of these experiments are represented in Fig. 1 – Fig. 3. 
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Fig. 1: Distance Characteristics for Sharp GP2D15 
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Fig. 2: Distance Characteristics for Sharp GP2Y0D340K 
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Fig.3: Distance Characteristics for Sharp GP2Y0D02YK 

In general, good agreement with the data given in the data sheets of the sensors 
can be observed. The 25 cm sensor reliably detected all kind of objects within a 
distance of at most 25 cm. The 50 cm sensor detected the steel cylinder, which was 
the object with the most reflective surface, at a distance of 45 cm whereas other 
objects were detected even at farther distances. The 80 cm sensor as well showed the 
desired results for the metal cylinder, which was correctly detected at a distance of 80 
cm. Other objects with a less reflecting surface could only be detected when they 
approached nearer to the sensor (up to 50 cm for textile structure of humans’ 
clothes).   

In order to be able to detect objects that are farther away and to be able to 
estimate their real distance, analogue sensors have been tested as well. 

Two different types, one for short range detection and one for long range 
detection have been considered: 

 Sharp GP2Y0A02YK (20-150 cm) 

 Sharp GP2Y0A700K0F (100-550 cm) 

Again, experiments with different kind of materials have been performed to 
evaluate the differences due to changing surface textures (see Fig. 4 and Fig. 5). 
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Fig. 4: Distance Characteristics for Sharp GP2Y0A02Y 
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Fig. 5: Distance Characteristics for Sharp GP2Y0A700K0F 
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The general behaviour fits quite well to the characteristics given in the data sheet 
though some discrepancies especially for non metallic objects have been determined. 
The 150 cm sensor is able to detect all kinds of objects up to distances of about 1m. 
Textile surface of human clothes and the steel cylinder were even detected at a 
distance of 130 cm. Due to different response for different materials it is not possible 
to determine the exact distance of the detected object. 

A similar behaviour was observed for the 550 cm sensor. Again qualitatively 
similar results were obtained for different materials though quantitative differences 
were observed. All kind of objects could be detected up to a distance of at least 4m 
whereas the strongly reflecting steel cylinder was even detectable up to a distance of 
6m. 

Furthermore, experiments were conducted to evaluate the angular deviance from 
the centreline, to check whether it is acceptable for correct detection. It was observed 
that the detectable field is rather a small cylinder than a cone. In order to be able to 
detect objects they have to be straight in front of the sensor (in its centreline) with a 
possible lateral deviation of few centimetres (1-3 cm) in horizontal as well as in 
vertical direction. Objects that are out of this narrow beam will not be detected. In 
order to avoid the use of a high number of sensors, a solution could be the mounting 
of one (or various) sensors on a servo for scanning a wide range in front of the robot. 
A combination of several fixed sensors (e.g. at the side area of the robot where 
intrinsic scanning is performed) and sweeping sensors will lead to better results. 

As a low cost alternative to infrared sensors ultra sonic sensors have been tested. 
The performance of the ultra sonic ranger SRF05 (S320111) has been evaluated in a 
similar manner as above to check for differences for various materials and 
geometries. 

The distance measurement of up to 4m given in the data sheet could well be 
verified for all tested objects and surface textures as long as the objects were placed 
perpendicular to the sensors centreline (see Fig. 6).    
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Fig.6.: Measured characteristics for SRF05 

In the corresponding data sheet it is stated that the beam pattern is conical and 
that it is not possible to reduce or change the beam width (see Fig. 7).  

 
Fig. 7: Beam pattern and beam width (obtained from SRF05 data sheet) 

In several experiments the real behaviour of the sensor was tested and 
differences for varying object dimensions were detected. A rather thin wooden pole 
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(10 cm) could only be detected inside a cone with an opening angle of 6° whereas the 
big frontal area of a plastic trash can reflect more easily the ultrasound, so it is 
detectable in a range of about 40° (both measurements performed at a distance of 
2m – see Fig. 8). It has to be stated though that objects out of the centreline will 
appear to be further away from the sensor than they actually are. The reason for this 
behaviour is that the reflection of the ultrasound wave is weaker which makes the 
sensor “see” the object farther away than it really is. 

 
Fig. 8: Detectable range for objects of different size (α=6° for a 10x10 cm pole and β=40° for 

a trash can) 

In comparison to the tested infrared sensors, less sensitivity to angular deviation 
and thus a wider detection range can be confirmed. Nonetheless, difficulties with 
objects with a small frontal area and especially with thin objects will arise, if they are 
not exactly in front of the sensor (in its centreline). 

A further problem of ultrasonic sensors is that objects which are not placed 
perpendicular to the sensor’s centreline are difficult to detect because the ultrasonic 
wave is not reflected back to the sensor. A 10x10 cm pole could not be detected when 
it was turned 45° even if it was located precisely in the centreline, whereas its 
detection was not a problem for perpendicular placement (measurements again 
performed at a distance of 2m – see Fig. 9). 
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Fig. 9: Correct detection of a 10x10 cm pole for perpendicular placement, and no detection for 

the same pole turned by 45° 

To evaluate the angular sensitivity of the sensor, experiments with a large planar 
surface were performed as well. For an angular deviation of α >=20° it was impossible 
to correctly detect the distance of the plane (measurements again performed at a 
distance of 2m – see Fig. 10). 

 

 

Fig. 10: Failure of distance measurement at an angular deviation of α=20°. 

 

In order to evaluate the behaviour of commercial ultra sonic sensors, experiments 
with sensors integrated in the bumper of a commercial standard vehicle were 
performed. As for the former experiments, different materials and geometries were 
used and the distance of detection was measured. Slight differences could be 
observed but as for the tests with the SRF05 ultra sonic ranger, they were mainly 
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caused by varying shapes rather than by varying materials. Reliable detection was 
observed for all kind of obstacles between 100cm for the wooden pole and 150cm for 
the stone. 

 

2.3 Methodologies for obstacle avoidance 

Obstacle avoidance is one of the most important tasks in mobile robotics. The 
challenge for obstacle avoidance algorithms is to use real-time data from the obstacle 
detection hardware (sensors, cameras, laser range finders,…), calculate a safe 
trajectory to avoid collision with the obstacle and assure to reach the globally defined 
goal position. In the case of a cleaning robot this is even more complicated as it is not 
only about eluding obstacles but also about performing autonomous coverage tasks. 

In general, the here presented methods are local path planners that are based on 
the principle of reactive navigation. The robot has to react in real-time to the signals 
read by the sensors. This is necessary when autonomously moving a robot in a partly 
unknown environment. 

 

2.3.1 Artificial Potential Field approach 

Already in the 80’s first works have been published concerning real-time obstacle 
avoidance. The wall following method was amongst the first that was presented as 
possibility for obstacle avoidance. Due to the inherent limitations of this method, soon 
thereafter more general methods like the artificial potential field approach (Khatib, 
1985) were presented. The idea of this approach is that obstacles exert a virtual 
repulsive force to push away the robot from obstacles and a virtual attractive force to 
guide the robot to the goal position. 

 

2.3.2 Virtual Force Field method (VFF) 

Combining the method of Khatib with the concept of Probabilistic Occupancy Grid 
maps developed at Carnegie-Mellon University (Moravec and Elfes, 1985), Borenstein 
presented the Virtual Force Field (VFF) method in 1989 (Borenstein and Koren, 1989). 
In comparison to edge detection methods these approaches can work well with 
uncertain information as they respond to clusters of high likelihood for the existence 
of an obstacle which results in an increased robustness of the algorithm in the 
presence of false readings. Furthermore, updating the grid-map with sensor 
information and using the grid-map for navigation are two independent tasks that are 
performed asynchronously. Another advantage is their computational efficiency which 
together with the other properties made virtual force field methods very popular. 

Problematic is the fact that in their basic implementation these algorithms will get 
stuck in local minima which are caused by U-shaped obstacles. Borenstein has 
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presented various heuristic rules to recover from different trap situations. One 
recovery algorithm is the wall following method (WFM) which guides the robot out of 
local minimum traps by following the obstacle wall until the way to the goal position is 
free again. By applying this algorithm it is possible to avoid most trap situations. 

 

2.3.3 Fuzzy Controller for Obstacle Avoidance 

A completely different approach for the robot control was presented by Uribe and 
Urzelai (Uribe and Urzelai, 1998) who propose the use of a fuzzy controller for 
obstacle avoidance. Depending on the current perception of the robot’s sensors the 
controller derives the variables for the vehicle’s orientation and acceleration. The 
obtained trajectories are smooth and the results are satisfactory after tuning the 
membership functions. Nevertheless, the behaviour of the robot is similar to artificial 
potential field methods what means that it may easily get trapped by local minima. 
Only a combination with wall following algorithms can avoid that the robot remains 
stuck in this kind of situations.  

 

2.3.4 Vector Field Histogram method (VFH) 

Analyzing the reasons for the shortcomings of the VFF method, Borenstein and 
Koren came up with an improved algorithm denominated Vector Field Histogram 
(VFH) (Borenstein and Koren, 1991). The main problem of the VFF method lies within 
the fact that all repulsive forces from different obstacles are resumed to one force 
vector. A simple example for a malfunction of the algorithm is a robot passing through 
a doorway. In that case the robot could be detained from entering the doorway as 
repulsive forces resulting from both sides of the doorway push the robot away. 

In difference to the VFF method the VFH method uses a two-stage data reduction 
technique. In the first reduction-step the perception of the robot’s sensors updates the 
two-dimensional Cartesian histogram grid similar to the VFF method. In the next step, 
a one-dimensional polar histogram is constructed around the robot’s momentary 
location. As in the VFF method, only an active window centred at the current robot 
position is considered for the calculation of the polar histogram. 

The values for the drive and steer controllers are now calculated by the current 
goal direction and the histogram value in this direction.  If the histogram value is 
below a prescribed threshold, the path to the goal is free and the robot moves in this 
direction. In case of exceeding this threshold, a valley is searched in the polar 
histogram close to the current goal direction and the robot is moved in this direction 
thus eluding a collision with the obstacle that impedes straight motion. 

In case of narrow valleys the algorithm is able to decide whether the robot will fit 
through this narrow passage by choosing a centred path through the valley. 

Nevertheless, it has to be stated, that the VFH method is a local path planner as 
well as earlier presented algorithms. It does not attempt to find an optimal path, a 
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task that has to be performed by a global path planner. Furthermore, the robot may 
again get trapped in dead-end situations. Several heuristic rules can be applied to 
resolve these problems even though the resulting path will still not be optimal. 

 

2.3.5 VFH+ method 

A major improvement of the VFH method has been presented in 1998 by Ulrich 
and Borenstein (Ulrich and Borenstein, 1998). A first feature of the so called VFH+ 
method is the use of a theoretically determined low-pass filter to compensate for the 
width of the robot. Second, instead of using one threshold value for the calculation of 
the polar histogram, two threshold values are used in the VFH+ method. This 
improves the movement of the robot in environments with several narrow openings 
and avoids bringing the robot close to an obstacle. Maybe the most interesting feature 
of the VFH+ algorithm is the fact that it takes into account the dynamics and the 
kinematics of the robot. This is achieved by assuming that the possible trajectories of 
a mobile robot are based on circular arcs and straight lines. The radius of the arcs 
mostly will be directly dependant on the current speed of the robot. Thus, for a given 
speed of the robot it can be checked which directions may be dynamically blocked by 
obstacles. Algorithmically this is achieved by employing additional steps to the data 
reduction process. In particular, the information of dynamically blocked directions is 
added to the polar histogram obtaining a so-called masked polar histogram. All these 
features together lead to smoother robot trajectories and greater reliability. 

 

2.3.6 VFH* method 

In 2000 another improvement of the VFH+ algorithm has been presented by 
Ulrich and Borenstein (Ulrich and Borenstein, 2000). Whereas VFH+ is a purely local 
obstacle avoidance algorithm, the VFH* algorithm adopts a look-ahead verification by 
projecting the trajectory of the robot several steps ahead and evaluating the 
consequences. Although the algorithm is not purely local anymore and an A* search 
algorithm has to be executed, it performs still sufficiently fast to come up with the 
requirements for a real-time algorithm. The general idea of the algorithm is based on 
the VFH+ algorithm but instead of evaluating only the cost function for the current 
free directions, the cost function is calculated looking various steps ahead summing 
up the costs of the single branches. 

 

2.3.7 Traversability Field Histogram (TFH) 

Interesting for the Dustbot project is a work presented by Ye and Borenstein 
describing Obstacle Avoidance for a Segway Robotic Mobility Platform (Ye and 
Borenstein, 2004). This robotic platform is foreseen to be employed in the task of 
picking up bin cans from citizens. The main sensor in the system is a SICK 2D laser 
rangefinder which is mounted on the front end of the Segway RMP and looks forward 
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and downward at an angle of -10° from the horizon. Thus, it is possible to scan the 
environment in a distance of 5 meters and the recorded data are registered in a 2-
dimensional array. Obstacles or surface imperfections are represented with a value of 
their height in the corresponding element of the array. This information is used by the 
Terrain Traversability analysis TTA module which creates a Traversability Map. 
According to the traversability indices (TI) the local path planner generates steering 
and velocity commands to avoid cells with high TIs. The local path planner bases on 
the VFH concept but is extended by the information provided within the Traversability 
Map. Thus, it enhances the capability of the VFH approach from obstacle avoidance on 
flat ground to obstacle navigation on non-flat ground. The resulting algorithm is 
denominated Traversability Field Histogram. 

 

2.3.8 Dynamic Window Approach 

An approach was presented by Fox (Fox et al, 1997) taking into account the 
dynamic and kinematic constraints of the robot similar to the VFH+ algorithm. The 
method is called dynamic window approach and considers only admissible velocities 
which can be reached within the next time interval and which allow the robot to stop 
safely. The combination of translational and rotational velocity within the dynamic 
window is then chosen by maximizing an objective function. 

 

2.3.9 Curvature Velocity Space method 

Another method using a related approach is the curvature velocity space method 
(CVM) presented by Simmons (Simmons, 1996). This method chooses a point in the 
linear-angular velocity space which satisfies some constraints and maximizes an 
objective function. This objective function tries to move the robot close to the 
commanded direction at the highest feasible speed, while travelling the trajectory with 
the largest clearance from obstacles. One problem of this approach is the fact that in 
certain cases the largest free trajectory leads away from the target position by not 
finding openings in the way to this position. 

 

2.3.10 Beam Curvature method 

Fernández et al proposed an improvement for the curvature velocity space 
method with a radial directional method (beam method) (Fernández et al, 2004). This 
beam curvature method (BCM) holds the advantage that it not only maximizes the 
objective function but also takes into account the local direction for a collision-free 
space by radial projection. For that reason, BCM will find openings faster and more 
reliable than CVM which results in an increment in the response time to the robot. 
Furthermore, it will create smoother trajectories and in general reach the goal location 
faster than CVM.  
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2.3.11 Nearness diagram Navigation 

The nearness diagram (ND) navigation approach is a different method that was 
presented by Minguez and Montano (Minguez and Montano, 2004). Similar to the VFH 
method a polar histogram is considered to derive actions to be taken for the robot. In 
difference to former methods a binary decision tree is used to derive the currently 
best suited action in dependence of the sensory information. Several criteria define 
the robots current situation. This set of situations is made up distinguishing whether 
the robot is in a low or high safety area, whether obstacles are only on one or on both 
sides of the free driving area, whether the goal location lies within the free driving 
area or whether the free driving area is narrow or wide. This representation is 
unambiguous and complete and hence fulfils the situated-activity paradigm of 
behavioural design (Arkin, 1999). According to each situation, an action is defined to 
solve the reactive navigation task. Although the actual realization differs in some 
points from the formerly presented VFH+ and VFH* algorithms, the final performance 
seems to be quite similar. The ND approach avoids local trap situations and is able to 
traverse narrow corridors without oscillation. One advantage of this approach is that 
smooth behaviour in cluttered environment is achieved without the necessity of tuning 
parameters. The divide and conquer strategy based on navigational situations 
(position of the robot, obstacles and goal position) significantly simplifies navigation 
thus enabling this technique to deal with more complex navigation scenarios. 
Nonetheless, like other local obstacle avoidance methods, this approach can not 
exclude the possibility to get caught in trap situations when the obstacle is not 
completely visible. 

The ND+ method (Minguez, Osuna and Montano, 2004) improves the previous ND 
method with new navigational situations and a new design of the motion laws (to have 
motion continuity in the most common transitions between situations). Another 
advantage of the ND+ method is that works at more than 1000 Hz, thus the reaction 
to the evolution of the scenario is very rapid and it can be used when required without 
imposing a significant time penalty. 

 

2.4 Preliminary conclusions 

Not a unique type of sensor is able to detect and identify all kind of obstacles in 
any situation. That is the reason why in DustBot system MULTISENSOR solution is 
recommended. Different solutions are proposed: 

 SEVERAL ULTRASONIC SENSORS: They can be placed in the perimeter of 
the robot, oriented downwards, to the floor to detect slopes, descents or 
steps and at a height depending on their range of detection. The number of 
sensors to be used will depend on the dimension of the robot and on the 
required field of detection. 
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 OTHER SENSORS for detecting moving obstacles, like pedestrians and 
cyclists and objects in general: They can be oriented forwards and different 
kinds of combined solutions may be proposed: 

 Vision sensors (+ PMD cameras) + infrared sensors. 

 Ultrasonic sensors + infrared sensors. 

 Microwaves radar sensors + vision sensors. 

 Laser scanners + vision sensors. 

 Laser scanners + microwaves radar sensors + vision sensors. 

In order to decide the number and exact types of sensors, the following data 
should be fixed. They mainly depend on dimensions and movement characteristics of 
the DustBot: 

 Time to respond. 

 Output time. 

 Range. 

 Accuracy. 

 Repeatability. 

 Resolution. 

 Sensibility. 

 Linearity. 
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3  Methodology and algorithms for robot navigation  

Navigation of Mobile Robots covers a large spectrum of different technologies and 
applications. It draws on some very ancient techniques, as well as some of the most 
advanced space science and engineering. 

"Mobile Robot Navigation" covers a large spectrum of different systems, 
requirements and solutions. 

The physical scale of a device's navigation requirements can be measured by the 
accuracy to which the mobile robot needs to navigate - this is the resolution of 
navigation. These requirements vary greatly with applications; however a first order 
approximation of the accuracy required can be taken from the dimensions of the 
vehicle itself. Any autonomous device must be able to determine its position to a 
resolution within at least its own dimensions, in order to be able to navigate and 
interact with its environment correctly.  

At the small end of the scale there are robots just a few centimetres in size, which 
will require high precision navigation over a small range (due to energy supply 
constraints), while operating in a relatively tame environment. At the other end of the 
scale there are Jumbo jet aircraft and ocean going liners, each with some sort of auto-
pilot navigation, which requires accuracy to a couple of meters (or tens of meters), 
over a huge (i.e. global) range, in somewhat more rugged conditions. 

Three terms are used in order to help in categorizing this scale of requirements: 

 Global navigation, which is the ability to determine one's position in 
absolute or map-referenced terms, and to move to a desired destination 
point.  

 Local navigation, the ability to determine one's position relative to objects 
(stationary or moving) in the environment, and to interact with them 
correctly.  

 Personal navigation, which involves being aware of the positioning of the 
various parts that make up oneself, in relation to each other and in 
handling objects.  

With the jet auto-pilot example Global navigation is the major requirement, for 
cruising between continents. Local navigation becomes necessary where the aircraft is 
expected to fly autonomously in crowded airways or on approach to the runway on 
landing. As for the DustBot project, personal navigation is not an issue, as the vehicle 
is, fundamentally, one object, and should (hopefully) never come into contact with 
any other significant objects while under autonomous control.  

The "micro" robot on the other hand, is almost exclusively interested in Personal 
and Local navigation. Such devices are rarely concerned with their position globally, 
on any traditional geographic scale. Instead their requirements are far more task 
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based - they are concerned with their immediate environment, in particular relative to 
any objects relevant in the successful completion of their task. This involves Personal 
navigation, when it is in contact with other objects, and Local navigation for actual 
movement.  

In general, the main focus of the scales of navigation is as follows,  

 Global: getting between end locations. 

 Local: carrying out a task while at a location.  

 Personal: monitoring of the individual robot and anything in contact with it.  

 

3.1 Technologies for robot localization 

Localization is a key component in many successful autonomous robot systems 
(Thrun, 2001). An accurate measurement of absolute position attitude and velocity of 
robots is mandatory for implementing correct robot movements and path planning 
tasks. By some authors the robot localization problem has been stated as the most 
fundamental problem to providing robots truly autonomous capabilities (Cox, 1991). 

The automatic localization has been addressed over the years using several 
methods. Many systems have been developed aiming at solving slightly different 
problems. These systems own very different features: they are based on different 
physical phenomena for estimating the robot’s position; they present different power 
requirements and different resolution in time and space. 

The general localization task presents a number of increasingly difficult problem 
instances (Thrun, 2001). In the position tracking problem the robot starts from a 
known location. The objective is to keep track of the position of the robot during the 
navigation through the environment. Techniques addressing this problem are called 
tracking or local techniques (Fox, 1999). If the robot acquires relative measurements 
we talk of dead reckoning: this technique has been used for a long time, ever since 
people started travelling around. The position estimates are based on last estimated 
positions and on measured speed and direction of travel: this cause an error in 
determining the robot’s location increasing over time. In robotics, dead-reckoning is 
usually performed by odometry or using inertial sensors ((Borenstein, 1996).The 
problem of determining the position of a robot when the initial position is not known is 
referred to as the wake-up robot (also called “knidnapped robot”) or global positioning 
problem. This is a more difficult problem than dead-reckoning, because the robot has 
to localize itself not relying on the knowledge of its starting location. Methods 
addressing this problem are called global techniques (Fox, 1999). 

To determine the location the choice usually falls within three major methods: 
triangulation, proximity and scene analysis. 
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When attempting to determine the location, the choice is usually done within 
three major techniques: triangulation, proximity, scene analysis. 

• The triangulation technique uses the geometric properties of the triangle to 
compute basing on some measurements the robot’s location. Triangulation can be 
done using multiple distance measurements between known points (lateration), or 
using measures of angles or bearing relative to points with known separation 
(angulation). 

• The proximity location sensing technique measures the nearness to a known set 
of points, by using a physical phenomenon with limited range. Three general 
approaches to this technique are: detection of the physical contact, monitoring of the 
wireless cellular access points and observation of ID system (such as RFID). 

• The scene analysis location technique uses the features of a scene observed 
from a particular vantage point to extract the location of the observer of the object in 
the scene. 

Location system implementations generally use one or more of these techniques 
to locate robots, objects and people. More details on these techniques are available in 
literature (Hightower, 2001a). 

Discussing and classifying localisation system implementations many issues arise. 
These issues do not generally depend on the technologies or techniques a system 
uses. The main characteristic to take into account analyzing the different typologies of 
localization systems are the following: 

 Physical position or symbolic location; it is the difference between the 
numerical or metric representation (i.e. GPS) and the descriptive or 
semantic representation (i.e. in the kitchen); 

 Absolute or relative position (as exposed above); 

 Accuracy and precision; 

 Localized Location Computation; some systems require the located object 
to periodically broadcast, respond with, or otherwise emit telemetry to 
allow the external infrastructure to locate it; 

 Scale; it is the area covered by the infrastructure that localizes the robot 
and the number of robot that can be localized simultaneously; 

 Cost; 

 Limitations. 

A summary of the main localization technologies (both commercial and research 
product) are reported in Table 1 (from Hightower, 2001b); in this table the most 
important characteristics of such technologies are analyzed and compared. A detailed 
overview of the considered technologies is also reported below. 
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3.1.1 GPS 

The Global Positioning System is maybe the most diffusely used localization 
system. GPS provides an excellent lateration framework for determining geographic 
positions relying on signals coming from the GPS satellites. The worldwide satellite 
constellation has reliable and ubiquitous coverage and, assuming a differential 
reference or using the Wide Area Augmentation System, allows receivers to compute 
their location with a precision of 1-5 meters (http:// www.garmin.com/aboutGPS/). 
GPS is currently used in aircrafts, search-and-rescue teams, hikers and navigation 
tools for cars. 

However, GPS has some notable drawbacks. First, it does not function indoors or 
underground. It also functions poorly whenever there are high buildings, mountains or 
trees in the way blocking the signals from the satellites. Second, GPS is not accurate 
enough for small scale navigation. Although it is accurate down to about a meter 
under good circumstances, the resolution is typically too coarse to assist a robot when 
turning or avoiding obstacles, for example. Of course, a GPS cannot detect obstacles, 
which means that the robot has to have additional sensors anyway. Thus, although 
GPS does give you a fairly good position fix under the right circumstances, and should 
certainly be used to support navigation when available, it is by itself insufficient. 

 

3.1.2 Active badge 

The Active Badge location system (the first indoor badge sensing system) was 
developed at Olivetti Research Laboratory (now AT&T Cambridge) (Want, 1992) and is 
a cellular proximity system relying on diffuse infrared technology. Each agent system 
uses a small infrared badge. The badge emits a globally unique identifier every 10 
seconds or on demand. These data are collected from fixed infrared sensors around 
the building. The Active Badge system computes the absolute locations of the agent 
systems. Active Badge system present problems when fluorescent lighting or direct 
sunlight are present because of the spurious infrared emissions these light sources 
produce. The effective range of this system is several meters. This limits cell sizes to 
small or medium-sized rooms. Multiple infrared beacons can be used in larger rooms. 

3.1.3 Active Bat 

Recently, AT&T lab has developed a location system called the Active Bat. This 
system uses an ultrasound time-of-flight lateration technique to reduce the problems 
Active Badges has (Harter, 1999). The system is based on Active Bat tags carried by 
the users. The controller sends a request via short-range radio; a Bat answers 
emitting an ultrasonic pulse to a grid of receivers fixed to the ceiling. The controller 
sends together with the radio frequency request packet also a synchronized reset 
signal to the sensors on the ceiling. The signal is sent using a wired serial network. 
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The time interval between the reset and the arrival of ultrasonic pulse is measured by 
each ceiling sensor. In this way, the ceiling sensor can compute its distance from the 
Bat. The local controller then sends the measured distance to a central controller, 
which performs the lateration. Statistical elaborations are carried out in order to 
eliminate erroneous sensor measurements caused by a ceiling sensor hearing a 
reflected ultrasound pulse not coming from the direct path from the Bat to the sensor.    

 

3.1.4 Cricket 

Another system complementing the Active Bat system (Priyantha, 2000) based on 
ultrasound emitters is the Cricket Location Support System. The infrastructure is 
created by the ultrasound emitters and the receivers that are embedded in the objects 
that have to be localized. In this approach the objects perform all their own 
triangulation computations. Cricket uses the radio frequency signal for synchronization 
of the time measurement and to limit the time period during which the receiver takes 
into consideration the sound it receives. Ultrasound pulses sensed after the end of the 
radio frequency packet are recognized as reflections and are discarded. An algorithm 
allows the use of multiple uncoordinated beacons in the same space.  

3.1.5 RADAR 

A system based on the IEEE 802.11 WLAN networking technology has been 
developed by a Microsoft Research group. This system is named RADAR (Bahl,2000) 
and it measures, at the base station, the strength and signal-to-noise ratio of the 
signal sent by the wireless device. Basing on these data it computes the 2D positions 
within a building. Two different versions exist: one using lateration and the other 
using scene analysis.  

3.1.6 MotionStar magnetic Tracker 

The use of electromagnetic fields to measure the position of one object is common 
in products for virtual reality and motion capture for computer animation. A classic 
position tracking method is that proposed in (Raab, 1979). Ascension offers several 
motion-capture solutions, such as the MotionStar DC magnetic tracker (Technical 
Description of DC Magnetic Trackers, 2001). These systems generate axial DC 
magnetic-field pulses from a transmitting antenna in a fixed position. The system 
measures the response to the transmitted pulse in three orthogonal axes, then, 
combining it with the constant effect of the earth’s magnetic field it computes the 
position and orientation of the object. Other technologies have been used in virtual 
environments and for computer animation. In (Bible, 1995) a CDMA radio ranging 
approach has been proposed. Many optical, infrared and mechanical motion-capture 
systems are produced by different companies. These systems, like Motion-Star, are 
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used in controlled environments and are not conceived and designed to be scalable for 
large environments. 

3.1.7 Easy Living 

The use of vision technology to localize an agent, or to localize objects in an 
environment, has been investigated by several groups of researchers. One result is 
the Microsoft Research’s Easy Living. This system employs the Digicolps real-time 
stereo cameras to localize objects in a home environment (Krumm, 2000). The vision-
based systems typically use large amounts of processing power to analyze the 
different frames captured by the vision system hardware. Multi-modal processing 
(silhouette, skin colour and face pattern) have been proved (Darrell, 1998) to 
significantly enhance accuracy in localization.  

 

3.1.8 Smart Floor 

In Georgia Tech’s Smart Floor system embedded pressure sensors (Orr, 2000) 
capture footfalls, and the system uses the data for position tracking. With this system 
the moving agent to be localized does not have to carry a device. The problem with 
the Smart Floor, however, is the poor scalability because the floor of each building has 
to be embedded with the pressure sensors.     

 

3.1.9 Ad hoc location sensing 

Ad hoc location sensing idea is to succeed in localizing objects without using an 
infrastructure or central control. All the entities become mobile objects owning the 
same sensing capabilities. Estimates of the positions are produced from the relative 
distances measured between the entities. These are relative measurements that can 
be absolute ones if some objects occupy known locations. For computing the distances 
triangulation, scene analysis or proximity can be used. One locating system based on 
this idea is the SpotON system (Hightower, 2000). It uses lateration using low-cost 
tags. The tags use radio signal attenuation to estimate the distance from one tag to 
another. The accuracy of the estimate is improved correlating multiple measurements. 
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Technology    Technique   Absolute Relative

Accuracy and 
precision 
available  Scale    Cost    Limitations  

 GPS    Radio time-of-
flight lateration 

X    1-5 meters 
(95-99%)  

 24 satellites 
worldwide 

 Expensive  
infrastructure  

$100 receivers 

 Not indoors  

 Active 
Badges 

 Diffuse 
infrared 
cellular 

proximity 

X    Room size  1 base per 
room, badge 
per base per 

10 sec 

 Administration  
costs, cheap 

tags and 
bases 

 Sunlight and 
fluorescent 

light interfere 
with infrared 

 Active Bats    Ultrasound 
time-of-flight 

lateration 

X    9 cm  (95%)  1 base per 10 
square 

meters, 25 
computations 
per room per 

sec   

Administration 
costs, cheap 

tags and 
sensors 

Required 
ceiling sensor 

grid 

 MotionStar    Scene 
analysis 
lateration 

X    1 mm, 1 ms, 
0.1° (nearly 

100 %) 

 Controller per 
scene, 108 
sensors per 

scene  

 Controlled 
scenes, 

expensive 
hardware 

 Control unit 
tether, precise 

installation 

 Cricket    Proximity, 
lateration 

x x  4 × 4 ft. 
regions (≈ 100 

%) 

 ≈ 1 beacon 
per 16 square 

ft. 

 $10 beacons 
and receivers 

 No central 
management 

receiver 
computation 

 MSR RADAR    802.11 RF 
scene analysis 

and 
triangulation 

X    3-4.3 m (50 
%) 

 3 bases per 
floor 

 802.11 
network 

installation, ≈ 
$100 wireless 

NICs 

 Wireless NICs 
required 

 Easy Living    Vision, 
triangulation 

X    Variable    3 cameras 
per small room

 Processing 
power, 

installation 
cameras 

 Ubiquitous 
public 

cameras 

 Smart Floor    Physical 
contact 

proximity 

X   Spacing of 
pressure 

sensors (100 
%) 

Complete 
sensor grid 

per floor 

Installation of 
sensor grid, 
creation of 

football 
training 
dataset 

Recognition 
may not scale 

to large 
populations 

 SpotON    Ad hoc 
lateration 

  X Depends on 
cluster size 

Cluster at 
least 2 tags 

$30 per tag, 
no 

infrastructure 

Attenuation 
less accurate 
than time-of-

flight 

 

Table 1 – Summary of main location sensing technologies. 
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3.2 Algorithms for robot navigation 

In Robot Navigation, on the theoretical side, a robot is faced with a number of 
algorithmic issues that are geometric in nature. This includes mapping a given 
environment, searching all possible locations in such an environment, or localizing the 
robot’s position on a given map; typically, available information is visibility-based, but 
motion-planning may also require the computation of a collision-free trajectory for a 
rigid body, if one exists. These geometric aspects are pursued in the field of 
Computational Geometry, where a lot of expertise has been developed, including 
deep results on visibility problems and motion planning.  

Another crucial feature of robot navigation is that path-planning has to be 
performed without full knowledge of all necessary data; such information only 
becomes available during the course of the robot’s motion, requiring optimization with 
incomplete information. Complete knowledge of the scenario only becomes known 
after a strategy has actually been applied. This means that an algorithm has to 
protect against various possibilities (including faulty sensors or inaccurate data), 
instead of basing its decisions on a complete description of the given information. 

Motion planning is one of the important tasks in intelligent control of an 
autonomous mobile robot. 

In a generic way, the problem of motion planning lies in carrying the robot from 
one initial point to a final one in a space free of collisions. This problem has largely 
been studied (Latombe, 1991; Laumont et al., 1994; Muñoz, 1995), and there is a 
great number of effective methods to solve the planning problem in real time, such as 
potential fields, visibility graphs, Voronoi diagrams, etc. However, in complex 
environments, there are more degrees of freedom, the robot presents more kinematic 
restrictions, and the limitations of the methods and the necessary time to find a 
solution are greater, too. 

Path planning algorithms are classified according to completeness as exact and 
heuristic (Hwang, 1992). Exact algorithms aim to find an optimal solution if one 
exists, or prove that there is no feasible solution. On the other hand, heuristic 
algorithms aim to search for a good quality solution in a short time. Exact algorithms 
are usually computationally expensive and assume perfect knowledge about the 
environment; however, heuristic algorithms may fail to find a solution for difficult 
problems. 

Different conventional approaches have been developed to solve path planning 
problems (Latombe, 1991) such as cell decomposition, road map and potential field. 
Most of these approaches are based on the configuration space concept (Lozano-
Pérez, 1979). Conventional approaches are not suitable for dynamic environments 
because they utilize a sequential search algorithm to generate a single solution. This 
solution may become infeasible when a change in the environment is detected and a 
new solution has to be generated from scratch. To overcome the weakness of these 
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approaches, researchers have been trying to apply other techniques to solve this 
problem. 

One known planning method is the potential fields method, which although it is 
fast, has a problem with the local minima. Random generation algorithms are used to 
obtain local planning towards a new minimum (Latombe, 1991). 

This situation has led to search new purely random planning methods to get a 
solution faster. Among the most widespread is the “Rapidly Exploring Random Trees” 
(LaValle, 1998), called RRT. There are new versions of this method in order to 
improve it, like “RRT- Ext-Con” (Kuffner y LaValle, 2000; LaValle y Kuffner, 2001) and 
“ERRT” (Bruce y Veloso, 2002). 

In general, in path planning there are two situations: sometimes the mobile robot 
has to go from one point to a goal, while in other cases it has to cover or sweep all 
the area. These situations are very different, so the path-planning requires different 
solutions in each case. 

In addition, sometimes the area to cover is known and mapped in advance, but in 
other situations the environment is unknown. In fact, the tasks of planning 
trajectories for a mobile robot have received considerable attention in the research 
literature. Most of the works assume that the robot has a complete and accurate 
model of its environment before it begins to move; less attention has been paid to the 
problem of partially known environments. 

There are many researches and studies to solve these problems. Different 
algorithms exist to solve different and particular situations. Some of them are 
explained in following paragraphs, grouped into two types of problems: “Point to Goal 
(PtG)” navigation and “Coverage (C)” navigation. 

 

3.2.1 Global and Local Path Planning 

The path-planning problem is usually defined as follows (Sugihara, 1997): “Given 
a robot and a description of an environment, plan a path between two specific 
locations. The path must be collision-free (feasible) and satisfy certain optimization 
criteria.” The path-planning component is divided in two sections: global path 
planning and local path planning. 

Global path planning requires the environment to be completely known and the 
terrain should be static. In this approach the algorithm generates a complete path 
from the start point to the destination point before the robot starts its motion. Local 
path planning is done while the robot is moving and involve the algorithm capable of 
producing a new path in response to environmental changes. Assuming that there are 
no obstacles in the navigation area, the shortest path between the start point and the 
end point is a straight line. The robot will proceed along this path until an obstacle is 
detected. At this point, this path-planning algorithm is utilized to find a feasible path 
around the obstacle. After avoiding the obstacle, the robot continues to navigate 
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toward the end-point along a straight line (in this system the robot moves in a vertical 
or horizontal direction, not diagonally; hence, it will try to approximate a straight line) 
until (1) the robot detects another obstacle or (2) the desired position is reached. An 
example of local path planning is shown in Fig. 22. 

 
Figure 22. Path-planning example for local obstacle avoidance, 

applied on a subsection of the search space. 
 

3.2.2 Genetic Algorithm (PtG) 

Robot path planning is part of a larger class of problems pertaining to scheduling 
and routing, and is known to be NP-hard (NP-complete) (Obitko, 1998). Thus, a 
heuristic optimization approach is recommended as shown by Hwang (Hwang, 1992). 
One of these approaches is the use of genetic algorithms. A genetic algorithm (GA) is 
an evolutionary problem solving method, where the solution to a problem evolves 
after a number of iterations. A proposed solution with the GA method to the path-
planning problem is the best feasible path among the pool of all possible solutions. 

There have been several contemporary applications of genetic algorithms to the 
robot navigation problem. One approach is to combine fuzzy logic with genetic 
algorithms (Arsene, 1999; Kubota, 1999; Pratihar, 1999). In this approach, the 
genotype structure represents fuzzy rules that guide the robot navigation, so the 
genetic algorithm evolves the best set of rules. While this approach can produce a 
feasible path through an uncertain environment, the genotype structure becomes very 
complex, as it needs to represent a variety of fuzzy rules. A complex genotype 
structure can take a long time to process in a genetic algorithm, which affects the 
realtime performance of the robot during navigation. 

Another approach is to use genotype structures that represent local distance and 
direction, as opposed to representing an entire path (Cazangi, 2002; Di Gesu, 2000; 
Gallardo, 1998; Vadakkepat, 2000). While these are simple to process and allow for 
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faster real-time performance, the local viewpoint of these methods may not allow the 
robot to reach its target. Some methods have relatively simple genotype structures 
that can represent feasible paths, but require complex decoders and fitness functions 
(Hocaoglu, 2001; Sugihara, 1997; Xiao, 1997). This can also affect real-time 
response. 

Simplifying the models used to represent navigation paths will reduce the 
processing time of the genetic algorithm. Research has focused on improving the 
genetic algorithm performance by simplifying the genotype structure. 

Genetic algorithms are a class of adaptive methods that can be used to solve 
search and optimization problems involving large search spaces. 

The following are general specifications for a GA-based local path-planning 
approach: 

 A map of the room in which the path planning takes place is known. The 
path planner will determine the length and the width of the search space 
and then apply a grid system to the room, similar to a chessboard. Thus, 
the room is divided into rows and columns. The locations of known 
obstacles are marked as “occupied cells” in the grid. 

 The row and column coordinates of the start-point and the end-point of the 
desired robot’s movement are also known. 

 The robot is allowed to move on all “free” cells, where the centre of the 
robot moves along an imaginary line from the centre of one cell to the 
centre of another cell. 

There are two types of robot movements: 

 Row-Wise Movement: In a row-based movement, the robot starts moving 
row by row from the start-point to the end-point. In other words, any 
horizontal line in the search space will meet the path only once. Therefore, 
in this movement, the robot always has to go forward and it does not have 
the capability of going back (up) to the previous row. 

 Column-Wise Movement: In a column-based movement, the robot will start 
moving toward its destination column by column to the right. In other 
words, any vertical line in the search space will meet the path only once. 
Therefore, in this movement, the robot always has to move from left to 
right, and it does not have the capability of moving back to the left. 

The structure must have sufficient information about the entire path from the 
start point to the end-point in order to be able to represent it. There are two variables 
defined: Path-Localization and Path-Direction, and this technique only allows row-wise 
movements. 

A new instruction flag is defined for each path, called Path-Flag. This Flag instructs 
the next movement type for each step of the movement, allowing the robot to plan 
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either a row-wise or a column-wise movement according to the search space 
arrangements, to combine both row-wise and column-wise paths while planning for a 
single path. This causes the robot to fail for complex environments that require the 
planning problem adds then a new variable: Path-Switch. The path has now more 
flexibility to switch between the two movement modes. 

Gene Structure: Path-Flag: a 1-bit flag for each chromosome. The main 
responsibility of this bit is to tell the robot whether the next step of the movement is 
row-wise or column-wise. During the entire robot movement, the decoder will check 
this instruction bit before each movement step. The next movement type will be 
based on the information provided by this flag. 

Gene Structure: Path-Location: if the robot is required to go row-wise (Path-Flag 
= 0), a gene’s position within a chromosome corresponds to a row-number (y- 
coordinate). The value, stored in a gene, in a variable called path-location, 
corresponds to a column number (x-coordinate). 

 

 

Figure 23. Example of Path-Location for row-wise movement 

 

On the other hand, for the column-wise movement (Path-Flag = 1), a gene’s 
position within a chromosome corresponds to a column-number (x-coordinate). Then, 
the value stored in that gene corresponds to a row-number (y- coordinate). 
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Figure 24. Example of Path-Location for column-wise movement 

Gene Structure: Path-Direction: The gene structure described so far only 
represents vertices (‘corner points’ or ‘intermediate steps’) of a path. To send a robot 
on a straight line directly from a centre of one vertex to the centre of the next vertex 
would mean that the robot moves on a diagonal line across many adjacent cells. This 
could cause problems if not all adjacent cells (that the robot is to traverse going from 
one cell to the next) are free of obstacles, as shown in Figure 25. A better approach is 
to go to the side (horizontal) first, turn, and then go down (vertical), or vice versa. To 
indicate the first direction the robot will turn to proceed to the next vertex, a second 
variable called Path-Direction is added to the gene structure. Direction is a two-state 
variable (Boolean), which has either the value 1 or 0 for horizontal or vertical 
directions respectively. The length of the direction array is one less than the length of 
the location array, since there is no direction instruction for the last location. 

 
Figure 25. Problem with diagonal movement of the robot 

 

Now the connection, and therefore the path, from one vertex to the next one is 
not a diagonal line, but a combination of a horizontal / vertical movement. Since the 
first direction that the robot turns to can be either horizontal (solid line) or vertical 
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(dotted line), there are two possible ways to get from one vertex to the next one for 
each step. The introduced variable Path-direction indicates which of the two ways the 
robot will use to go to the next vertex. 

 
Figure 26. The path with horizontal / vertical instead of diagonal movement 

It is obvious in Figure 26, one exception where the pathdirection variable will not 
affect the robot movement direction is when the two consecutive movement steps are 
either in the same column (for the row-wise movement) or in the same row (for 
column-wise movement). In either case, there is only one way to go from one vertex 
to the next one, which is a straight horizontal or vertical line. 

Gene Structure: Path-Switch: to combine both row-wise and column-wise paths 
while planning for a single path. Path-Switch variable enables the robot to switch back 
and forth between a row-wise (r.w.) and a column-wise (c.w.) movement in a single 
path. This array contains two switching numbers. Therefore, the robot can switch a 
maximum of two times from row-wise to column-wise and vice versa within a search 
space. The values that are stored in this array are integers and are in the range of 1 
to the total length or width of the environment. The numbers stored in this array 
indicate the location where the robot has to switch from r.w. to c.w. movement or vice 
versa. 

The switching numbers could be any number from 1 to the total number of the 
search space rows or columns. 

The number stored in each switching point indicates the location of the gene in 
which the robot has to switch. For instance, switching numbers 2,5 means the robot is 
switching two times: first at gene locations 2, then at location 5. 

 

3.2.3 Random Planning (PtG) 

Random Planning parts from a space of configurations divided in pieces that form 
a regular grid. Each square has a value of potential according to the proximity to an 
obstacle or the nearness to the start or goal points. The system generates a path with 
a gradient vector derived form the potential field. This technique allows the system to 
follow always the direction which minimizes the potential field value. The goal is to get 
the absolute minimum which will be located in the destination configuration. But the 
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resultant field can have some local minima, though always higher than the absolute 
minimum. 

When the system reaches a local minimum, the potential is not zero, but the 
gradient keeps the system in the reached configuration. To solve this inconvenience it 
resorts to a random generation method. Random movements are planed to let the 
system leave the minimum and, then, it applies again the gradient method. This 
process will continue until it finds a new minimum (Latombe, 1991). 

With the success of the random methods the possibility to use this technique in an 
exclusive way has emerged, eliminating the cost of processing for the calculus of the 
potential. They have to be simpler, to compete in speed and to compensate the lack 
of potential field information in the path planning algorithm. One of these methods is 
called “Rapidly Exploring Random Trees”, RRT (LaValle, 1998). It does not require to 
compute a potential field, and consequently saves processing time. In addition, the 
RRT assesses an equiprobable exploration for the whole configuration space. Finally, it 
is simple, fast and of easy extension towards complex stages. 

RRT algorithm: its original objective was to build one exploration tree to cover 
uniformly all the collision free space. This algorithm only has to generate a tree able 
to explore in an equiprobable way the free space. It’s not the most appropriate 
method to find the path among two points. 

The adaptation of the RRT algorithm to connect one initial configuration to a final 
one is obtained replacing the original RRT algorithm with the RRT- basic bidirectional 
algorithm. This algorithm is based in the construction of two trees that leave from the 
origin and destination points at the same time. 

This algorithm has some improvements. It presents one very restrictive condition, 
which requires that in the same iteration both trees meet in the same point. To get rid 
of this restriction go, it has been developed the RRT-Ext-Con algorithm (Kuffner and 
LaValle, 2000). The trees growth can be directed from one to another, instead of grow 
in places where the interconnection is difficult. To achieve this the RRT-Ext-Ext 
algorithm has been developed (La Valle and Kuffner, 2001). 

The RRT-Ext-Ext algorithm makes agile the connection among the trees. With a 
very little variation, it is possible to attribute an ability to let each tree to drive its 
growth towards its homologous. This makes it be more competitive against other 
algorithms purely random. In this way each tree spends half of its time exploring the 
free space, and the other half, looking for its partner. 

The RRT-Ext-Con algorithm, instead of adding a new segment to the tree, adds 
consecutive segments until it reaches the objective configuration or one obstacle 
(Kuffner and LaValle, 2000). It attenuates in this way the problem of the excessive 
restrictiveness of the basic bidirectional algorithm. The only disadvantage is a greater 
computational cost that is compensated in many stages with the greater efficiency of 
the algorithm. This algorithm presents a great efficiency when it plans trajectories for 
holonomic systems. On the opposite, like it is shown in (Cheng and LaValle, 2001), 
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the RRT-Ext-Ext algorithm represents the best option when it tries to plan trajectories 
for non holonomic systems. 

The obtained trees in the application of the different RRT algorithms can result 
very complex to be covered. Normally, the trees are susceptible of simplification (for 
example, sometimes the end of both trees could joint with a simple straight line). 

Therefore, in the practical applications of the RRT method, it is convenient to 
apply a postprocess to the obtained trees to reduce their irregular topology. In this 
way, like in other planning techniques, is common to apply simplification algorithms, 
very fast and simple, which proceed from the information given by the planificator and 
generate, in an iterative way, the simplest path. Such algorithms usually have a small 
computational cost. The postprocessing algorithm must be designed according to the 
particular application, constructing one more element for the planning system.  

 

3.2.4 D* Algorithm (PtG) 

This algorithm is capable of planning paths in unknown, partially known, and 
changing environments in an efficient, optimal, and complete manner. The name of 
the algorithm, D*, was chosen because it is dynamic in the sense that arc cost 
parameters can change during the problem solving process. 

It is assumed that the environment is completely known before the robot begins 
its traverse. The optimal algorithms search a state space (e.g., visibility graph, grid 
cells) using the distance transform (Jarvis, 1985) or heuristics (Nilsson, 1980) to find 
the lowest cost path from the robot’s start state to the goal state. Cost can be defined 
to be distance travelled, energy expended, time exposed to danger, etc. 

Unfortunately, the robot may have partial or no information about the 
environment before it begins its traverse but is equipped with a sensor that is capable 
of measuring the environment as it moves. One approach to path planning in this 
scenario is to generate a “global” path using the known information and then attempt 
to “locally” circumvent obstacles on the route detected by the sensors (Goto, 1987). If 
the route is completely obstructed, a new global path is planned. Lumelsky (Lumelsky, 
1986) initially assumes the environment to be devoid of obstacles and moves the 
robot directly toward the goal. If an obstacle obstructs the path, the robot moves 
around the perimeter until the point on the obstacle nearest to the goal is found. The 
robot then proceeds to move directly towards the goal again. 

It is possible to generate optimal behaviour by computing an optimal path from 
the known map information, moving the robot along the path until either it reaches 
the goal or its sensors detect a discrepancy between the map and the environment, 
updating the map, and then re-planning a new optimal path from the robot’s current 
location to the goal. 

There is a new algorithm for generating optimal paths for a robot, operating with 
a sensor and a map of the environment. The map can be complete, empty, or contain 
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partial information about the environment. Regions of the environment can be 
unknown, the map may contain approximate information, stochastic models for 
occupancy, or even heuristic estimates. The algorithm is functionally equivalent to the 
brute-force, optimal replanner, but it is far more efficient. 

 

3.2.5 The Genetic Algorithm Planner 

A Genetic Algorithm Planner (GAP) was proposed for solving the path planning 
problem in static and dynamic mobile robot environments. The GAP is based on a 
variable-length representation. A generic fitness function is used to combine the 
objectives of the problem. Different evolutionary operators are applied: some are 
random-based, and others use problem-specific domain knowledge. Various 
techniques are investigated to ensure that the GAP is appropriate for dynamic 
environments. 

In order to allow the algorithm to operate on the entire working space, vertex 
graphs are used to represent obstacles in the robot environment. Each obstacle is 
represented by an ordered list of vertices with no restrictions on the shapes or the 
sizes of the obstacles. 

A chromosome represents a path as a sequence of nodes, where each node 
contains an “x” and “y” coordinate of a point. The first node is the starting point (or 
the robot’s current location) and the last node represents the destination point. The 
number of knot nodes (intermediate nodes) in the path is variable. By using this 
representation the algorithm is able to search the entire space and adapt to the new 
changes in the environment with no extra map adjustments. Figure 27 shows the 
linked list data structure used to accommodate the variable length path. The initial 
population is generated randomly, where each path has a random number of nodes. 

 
Figure 27: Chromosome data structure 

 

A feasible path is evaluated according to the length, smoothness and clearance. A 
linear combination of these factors is illustrated with the following equation: 

 

where wd, ws, and wc represent the weights on the total cost and dist(p), 
smooth(p) and clear(p) are defined as follows: 

 , where d(si) is the distance between two adjacent 
nodes. 
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 , where θi is the angle between the extension 
of the two line segments connecting the ith knot point. α is the desired 
steering angle and “a” is a coefficient. 

 , where gi is the smallest distance from the ith 
segment to all obstacles, and τ is the desired clearance distance the “a” 
coefficient, which is referred to as the map coefficient which is a problem 
dependent coefficient and is defined as follows: 

 

Where A is the total map area, and OA is total obstacle area. Accordingly, 
the smoothness and clearance factors increase for simple environments, 
whereas it becomes small in a crowded environment. 
Figure 28 illustrates all the components involved in the feasible path 
evaluation function. 
 

 

Figure 28 illustrates all the components involved in the feasible path evaluation function 

An unfeasible path is evaluated according to the number of intersections with 
obstacles and the ratio between the numbers of feasible segments and unfeasible 
segments. A penalty function is used to make the least feasible path better than any 
unfeasible path. 

 

3.2.6 Gradient Methods for Real Time Robot Control (PtG) 

Another method for local navigation, the gradient method, computes optimal 
paths to waypoint goals. The method is efficient enough to be used for real-time 
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control. It overcomes the limitations of other local control paradigms because it 
computes a complete set of optimal paths to every point in the workspace, avoiding 
local minima and other control problems. 

Most current controllers are combinations of different techniques, using motion 
planning for a global path and other techniques to deal with uncertain or unknown 
objects. Motion planning generates an initial path based on prior knowledge of the 
environment, and then the path is adjusted as the robot senses obstacles that lie in 
the way of the path. 

The gradient method, continuously calculates an optimal path to a waypoint goal. 
The concept of optimality is derived by assigning costs to a path, based on its length 
and closeness to obstacles, as well as any other criteria that may be chosen. The 
gradient method computes a navigation function in the local space of the robot, such 
that the gradient of the navigation function represents the direction of the lowest-cost 
path at every point in the space. The method is efficient enough to be computed at a 
10 Hz rate with modest computational resources. The gradient method can generate 
the lowest-cost path in a static and completely known environment. 

The navigation function assigns a potential field value to every point in the space. 
Travelling along the gradient of the navigation potential yields the minimum cost path 
to the goalset from any point in the space. 

To find a path with minimum cost to some point in the goalset, that path is 
represented by an ordered set of points in the sample space, 

 

P={p1, p2,…} 

 

Abbreviate a path that starts at point k by Pk. 

The cost of a path is an arbitrary function of the (discretized) path, F(P). 

Make the assumption that the path cost is separable into the sum of an intrinsic 
cost of being at a point, along with an adjacency cost of moving from one point to the 
next: 

 

I and A can be arbitrary functions. I will represent the cost of traversing through 
the given point, and will be set according to the domain characteristics, e.g., a high 
cost will be assigned to being near an obstacle. Other possibilities are to have higher 
costs for unknown regions, slippery regions, etc. 

The path length can be taken into account by assigning A to be proportional to the 
Euclidean distance the robot travels between the two points; then the sum of A gives 
a cost proportional to the path length. 
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A navigation function N is the assignment of a potential field value to every 
element of the configuration space, such that the goalset is always “downhill” no 
matter where you are in the space (Latombe, 1991). Navigation functions, unlike 
potential field methods in general, have the characteristic that it is impossible to get 
stuck in a local minimum, and no search is required to determine a direction to go to 
arrive at the goalset. 

The key idea behind the gradient method is to assign the navigation function at a 
point to be the cost of the minimal cost path that starts at that point. 

 

where as before, the path Pk starts at point k. 

If the intrinsic costs are zero, then the navigation function just represents the 
distance to the nearest goalset point. Travelling in the direction of the gradient of N 
yields the fastest reduction of path costs, i.e., the minimum distance to a goalset 
point. In the general case, travelling along the gradient is a minimum cost path to the 
goalset. 

Navigation functions for small-dimension spaces have been computed by a 
wavefront algorithm (Akin, 1990; Thrun, 1998). The goalset points are assigned a 
value of 0. At each iteration, the points with value n are expanded to their nearest 
(rectilinear) neighbours, giving them a value of n+1 if they are not already assigned, 
and are not obstacles. The process repeats until all points have been assigned. It 
takes time of the order of the number of points in the space, which is why it can only 
be used in small spaces. 

The wavefront algorithm never backtracks, because at each point it advances the 
navigation function only to those points that have a value one higher than any other 
assigned point. 

Linear programming is a generalization of the wavefront algorithm, which is called 
LPN. The cost of LPN is again the order of the number of points in the space, and it 
reduces to the wavefront algorithm under the appropriate conditions on the navigation 
function. 

Initially all goalset points are assigned a value 0, and every other point an infinite 
cost. The goalset points are put in an active list of points. At each iteration of the 
algorithm, it operates on each point on the active list, removing it from the list and 
updating its neighbours. 

It is possible to show that the LPN algorithm computes the least-cost path to 
every point in the workspace. At each point in the workspace, the gradient of the 
navigation function computed by LPN, if it exists, points in the direction of a least-cost 
path to the goalset. 
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The LPN algorithm runs in time proportional to the number of points in the 
workspace. On a modest PC (266 MHz Pentium), a C implementation averages about 
1 µs per workspace point. For a 10 m by 10 m workspace, with a grid size of 10 cm, it 
will take 10 ms to calculate the navigation function. Thus, the LPN algorithm is 
suitable for realtime control. Using a 10 Hz rate, it is fast enough to run the robot 
efficiently at speeds up to 1 m/s. 

 

3.2.7 Real-Time Visual Behaviours for navigating a mobile 
robot (PtG) 

The use of vision in mobile robotics has become wide spread. Humans have a 
good sense of direction, and can navigate without using precise coordinates for 
localisation (McCleary, 1974). In other methods, navigation is done relative to 
landmarks (Schone, 1984). The goal is to provide a mobile robot with sufficient visual 
behaviours to navigate freely in an unknown environment.  

This method of using video signal produces obstacle avoidance by searching at 
frame rate for free space in each frame of the video signal. While the robot is 
travelling through the environment it could be given the purpose of finding a goal, and 
then using this for navigational purposes. This is done by providing the robot with goal 
templates (or landmarks). 

The vision system continuously searches its input for the landmark template. If a 
landmark template is detected, the robot can execute several actions. If at any time a 
match is found a motion vector toward the landmark is sent to the robot. This will 
guide the robot towards the goal. This is a visual servoing behaviour. 

In a map, a landmark can be included together with information about its location 
of a goal. This provides the robot with an internal representation of the goal. This is 
similar to the idea of McFarland et al. (McFarland, 1993) of goal-directed behaviour. 
This provides the robot with a desire to move towards a goal. The behaviour produces 
a motion vector that is fed into the robot’s locomotion system resulting in motion 
towards the goal. Combining this behaviour with the goal seeking behaviour results in 
a behaviour which moves the robot between landmarks. The robot can navigate by 
using visual landmarks as cues to robot actions. The position of the landmarks can be 
changed without affecting the system, thus yielding a robust system. 

 

3.2.8 Sensor-based navigation by Minguez et al. (PtG) 

Up to now global navigation systems have been presented in this chapter whereas 
local reactive path planners have only been discussed in an isolated manner in chapter 
2.3. Especially in the case of a dynamic environment which is not completely 
specifiable with an a priori map it is obvious that the overall problem cannot be solved 
by these systems individually. Thus, it makes sense to focus on synthesizing a control 
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mode that incorporates these methodologies, and not on extending both worlds 
separately (Arkin, 1990). 

Especially Minguez et al (Minguez, Montesano and Montano, 2004) have 
performed extended research in this field. Their sensor-based robot navigation system 
is formed by an architecture that integrates three modules with the following 
functionalities: model construction, motion planning and reactive navigation. 

Globally the system works as follows (Figure 29): given a laser scan and the 
odometry of the vehicle, the model builder incorporates this information into the 
existing model. Next, the information of obstacles and free space in the grid is used 
by the planner module to compute the course to follow to reach the goal. Finally, the 
reactive module uses the information of the obstacles contained in the grid and 
information of the tactical planner to generate the motion (to drive the vehicle free of 
collisions towards the goal). The motion is executed by the vehicle controller and the 
process restarts with a new sensorial measurement. 

It is important to stress that the three modules work synchronously within the 
perception - action cycle. 

 
Figure 29: Overview of the sensor-based navigation system 

Model Builder Module: 

The function of this module is to integrate the sensorial measures to construct a 
model of the environment. A binary occupancy grid is chosen because it is an efficient 
structure from which it turns out simple to obtain the free space (the one of interest 
for the movement). The cells are assigned either free or occupied state by scanning 
the workspace with a laser range finder resulting in high precision. The grid has a 
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fixed size that represents a limited part of the workspace (large enough to represent 
the portion of space necessary to solve the navigation task) and whose position is 
recomputed to maintain the robot in its central zone. The design and supervision of 
this module include three parts: (i) the use of a technique of scan matching to 
improve the vehicle odometry, for example using the Iterative Dual Correspondence 
algorithm (Lu, 1997), which searches for correspondences between two consecutive 
laser scans in order to estimate the rigid motion.  (ii) the integration of the laser 
measures in the model, using the Bresenham algorithm (Foley, 1990), and (iii) the 
supervision of model position to maintain the robot centred. 

Planning Module: 

This module uses a motion planner to obtain tactical information to avoid trap 
situations and cyclical motions. In the course of the years several different motion 
planners have been implemented to conduct this task (Montesano, Minguez and 
Montano, 2006). In a first approach, the planner constructs a navigation function 
(NF1) over the grid of the previous module. Then it computes a path to the 
destination using a steepest descendent strategy. This navigation function is free of 
potential minima (if a path exists, it is found), and it can be efficiently executed in real 
time. In a first improvement a planner was developed by Minguez et al independently 
but similar to the Gap Navigation Trees. The idea behind this planner is to construct a 
graph of reachable points of the space, instead of an analytical path as many classical 
planners do. The planner iteratively constructs a graph whose nodes are locations in 
the space and the arcs are tunnels of free space that joins them. When the goal is 
reached, the current tunnel contains a path to the goal. The advantage of this planner 
is the computation time since in average it is more efficient than computing a local 
path from scratch with a navigation function. Following this development the 
application of the D* Lite planner was explored as well. The principle of this planner is 
to locally modify the previous path (available from the previous step) using only the 
changes in the environment. This strategy is by far more efficient than recomputing 
the path from scratch (up to two orders of magnitude).  

Reactive Module: 

As reactive module the Nearness Diagram Navigation method (ND) and 
subsequently the ND+ method came to use. For a closer description of this method 
see chapter 2.3.11. 

Next sections cover the “Coverage path planning”, which is the determination of a 
path that a robot must take in order to pass over each point in an environment. 
Applications include vacuuming, floor scrubbing, and inspection. 

 

3.2.9 The Boustrophedon Cellular Decomposition (C) 

The boustrophedon (literally means “the way of the ox”) cellular decomposition is 
an exact cellular decomposition approach for the purposes of coverage. Each cell in 
the boustrophedon is covered with simple back and forth motions. Therefore, 
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coverage is reduced to finding an exhaustive path through a graph which represents 
the adjacency relationships of the cells in the boustrophedon decomposition. Coverage 
path planning determines a path that guarantees that an agent will pass over every 
point in a given environment. 

 
Figure 30: Boustrophedon Path 

Cellular decomposition is a motion planning technique in which the free 
configuration space (set of all robot configurations where the robot does not overlap 
an obstacle) is decomposed into cells in such a way that the union of the cells is the 
original free space. Each cell can be represented as a node in a graph, where adjacent 
cells have an edge connecting their corresponding nodes. This graph is called an 
adjacency graph. If each cell can be covered by the robot, then the floor coverage 
problem reduces to determining a walk through the adjacency graph that visits each 
node at least once. 

One popular cellular decomposition technique, which can yield a complete 
coverage path solution, is the trapezoidal decomposition (Latombe, 1991), also known 
as the slab method (Preparata, 1985) in which the robot’s free space is decomposed 
into trapezoidal cells. Since each cell is a trapezoid, coverage in each cell can easily be 
achieved with simple back and forth motions (see Figure 30). Coverage of the 
environment is achieved by visiting each cell in the adjacency graph. The trapezoidal 
decomposition approach assumes that a vertical line, termed a slice, sweeps left to 
right through a bounded environment which is populated with polygonal obstacles. 
Cells are formed via a sequence of open and close operations which occur when the 
slice encounters an event, an instance in which a slice intersects a vertex of a 
polygon. There are three types of events: IN, OUT, and MIDDLE. Loosely speaking, at 
an IN event the current cell is closed (thereby completing its construction) and two 
new cells are opened (thereby initiating their construction). See Figure 31.  
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Figure 31: In Event 

An OUT event is the reverse: two cells are closed, and a new one is opened. See 
Figure 32. 

 
Figure 32: Out Event 

The IN event can be viewed as one cell breaking up into two cells, whereas the 
OUT event occurs as two cells merge into one. At a MIDDLE event, the current cell is 
closed, and a new one is formed. The result of these operations is a free space that is 
broken down into trapezoidal cells. 

Unfortunately, the trapezoidal approach requires too many redundant back and 
forth motion to guarantee completeness. Another drawback of the trapezoidal 
approach is that it requires the environment to be polygonal. 

The boustrophedon cellular decomposition is an enhancement of the trapezoidal 
decomposition and is designed to minimize the number of excess lengthwise motions. 
In essence, all cells between IN and OUT events are merged into one cell. Figure 33 
shows the trapezoidal decomposition and Figure 34 the boustrophedon decomposition. 
The boustrophedon decomposition has a fewer number of cells. 
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Figure 33: Trapezoidal Decomposition 

 

Figure 34: Boustrophedon Decomposition 

 

In the boustrophedon cellular decomposition, like in the trapezoidal 
decomposition, at an IN event, where the connectivity of the slice increases, the 
current cell is closed and two new cells are opened (Figure 35). 

 
Figure 35: In Event 

Conversely, at an OUT event, where the connectivity of the slice decreases, the 
two current cells are closed and one new cell is opened (Figure 36). 
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Figure 36: Out Event 

The difference between the trapezoidal decomposition and boustrophedon 
decomposition approach is with the middle events: at the MIDDLE events, do not open 
nor close a cell, but rather simply update the current cell. 

A depth-first-like graph search algorithm outputs a path list that represents an 
exhaustive walk through the adjacency graph. A walk through the path list constitutes 
an exhaustive walk through the adjacency graph. Finally, the actual path for the robot 
to take is computed using the above described path list. When the robot enters an 
“unvisited” cell, the boustrophedic motion is planned, and then a path to the next cell 
in the path list in planned. When the robot enters a “visited” cell, it simply plans a 
path through that cell to the next cell in the path list. These two actions are repeated 
until the end of the path list is reached, i.e., until each cell has been “visited”. 

In the boustrophedon decomposition method, the middle event is replaced with 
two more types of events: FLOOR and CEILING. FLOOR events correspond to vertices 
that are on the top of the polygonal obstacle and the CEILING events correspond to 
vertices that are on the bottom of the obstacle. 

The input to the algorithm is a list of polygons whose vertices are listed in 
counter-clockwise-order. 

An event is a vertex of a polygon and may be associated with additional 
information; it contains the location of the event, its type, and pointer(s) to the edge 
(or edges) that is (are) associated with it. The event structure has up to two types of 
pointers to edges: floor pointers and ceiling pointers. An IN event’s ceiling pointer 
points to the next edge emanating from the event and the floor pointer points to the 
previous edge terminating at the event. See Figure 37. 

 
Figure 37: In Event 
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Conversely, the OUT event’s floor pointer points to the next edge emanating from 
it and the ceiling pointer points to the edge terminating at the event. A CEILING event 
only has a ceiling pointer which points to the edge emanating from the event. A 
FLOOR event only has a floor pointer which points to the edge terminating at the 
event. 

When considering a particular polygon, the algorithm first finds the IN event of 
the polygon. The algorithm walks through the vertex list of a polygon until it 
encounters the left-most vertex. This vertex, and its related information, is inserted 
into an event list. Since the vertices are ordered in a counter clockwise fashion the 
next sequence of vertices are CEILING events. Recall that although these vertices 
correspond to the underside of the polygon, they are CEILING events because they 
correspond to the ceiling of the cell that is immediately below the polygon. 

The algorithm walks through the polygon list, inserting each vertex as a CEILING 
event, until the algorithm encounters the right-most vertex. This vertex, and its 
associated information, is inserted into the events list as an OUT vertex. The 
remaining vertices correspond to FLOOR events. 

As the events are encountered, they are inserted into an order events list sorted 
by the x-coordinate of the event. The insertion process is O (n log n) where n is the 
total number of edges (or vertices) in polygonal environment. 

A cell can be represented by two lists: a list of floor edges and a list of ceiling 
edges, both of which bound the cell. Therefore, the cell structure contains two 
pointers to a list of edges: a floor pointer and a ceiling pointer. The cell structure also 
contains a linked list of pointers to neighbouring cells. Finally, the cell structure has 
two flags: visited and cleaned, which will be used in the algorithm. 

 

3.2.10 The Minimal Sum of Altitudes (MSA) Decomposition (C) 

In robotics, one basic approach to the coverage problem is to decompose the 
region into sub regions, select a sequence of those sub regions, and then generate a 
path that covers each sub region in turn. 

Under certain assumptions, the cost to cover a polygonal sub region is 
proportional to its minimum altitude. An optimal decomposition then minimizes the 
sum of sub region altitudes. 

A coverage algorithm must generate what it is called a coverage path, i.e. a 
detailed sequence of motion commands for a robot over a specified region. An optimal 
coverage algorithm would return a coverage path that minimizes, for example, the 
time required to execute that path. 

Several existing algorithms take the following basic approach to generating a 
coverage path: the region to be covered is decomposed into sub regions, a Travelling 
Salesman algorithm is applied to generate a sequence of sub regions to visit, and a 
coverage path is generated from this sequence that covers each sub region in turn. 
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These algorithms all use a single line sweep in order to decompose the coverage 
region into sub regions, and these sub regions are individually covered using a back 
and forth motion in rows perpendicular to the sweep direction. In existing algorithms, 
all sub regions use the same sweep direction. 

After finishing one row, the robot must turn around to start the next row, 
minimizing the number of these turns is the most important factor in an efficient 
solution. The number of turns is directly related to the orientation of the sub region 
(measured along the sweep direction), so the optimality criterion is to minimize the 
sum of sub region altitudes. 

By allowing different sweep directions to be assigned to each sub region of a 
decomposition, it can be produced a lower sum of sub region altitudes and thus a 
cheaper coverage path: the minimum sum of altitudes (MSA) decomposition. An 
algorithm to generate this decomposition creates an initial decomposition based on 
multiple line sweeps and then uses dynamic programming to group sub regions and 
assign sweep directions to each sub region. 

Previous works exits about this decomposition: 

 Choset and Pignon describe an off-line planning algorithm for polygonal 
worlds which explicitly performs line sweep decomposition (the 
“Boustrophedon” decomposition) and creates a sequence of sub regions 
(cells) using an heuristic Travelling Salesman algorithm. Hert et al. describe 
an online algorithm for non polygonal worlds which implicitly uses a line 
sweep decomposition and a heuristic Travelling Salesman algorithm. 
Schmidt and Hofner use an off-line planning algorithm to generate a 
coverage path based on a line sweep decomposition. 

 Kurabayashi et al. (Kurabayashi, 1996) describe an off-line algorithm for 
planning coverage paths for multiple robots. It appears to generate a single 
coverage path, based on both “direction parallel” and “contour-parallel” 
motion. Zelinsky et al. (Zelinsky, 1994) describes a grid-based coverage 
algorithm. 

 More recent results include: Gabriely and Rimon, who formulated a 
coverage algorithm based on travelling about the perimeter of a minimum 
spanning tree that fills the coverage region; Butler et al. (Butler, 2000), 
who created a distributed algorithm for multiple robots to cover an 
unknown rectilinear environment; and Choset et al. (Choset, 2000) who 
have extended the Boustrophedon decomposition to higher dimension 
Euclidean spaces. 

A coverage algorithm must return a coverage path: a detailed sequence of motion 
commands for the robot to sweep over all points in the coverage region. Optimal 
coverage is a difficult problem because it is not clear what an optimal coverage path 
would look like; there are many qualitatively different coverage paths for a given 
region.  
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The time to cover a sub region using back and forth motion consists of the time to 
travel along the rows plus the time to turn around at the end of a row. As illustrated 
in Figure 38, covering a sub region in different directions produces rows of 
approximately the same total length; however, there can be a large difference in the 
number of turns required. Furthermore, turns take a significant amount of time - the 
robot must slow down, make the turn, and then accelerate. It’s important therefore to 
minimize the number of turns required, and this is proportional to the altitude of the 
sub region measured along the sweep direction. 

Under these assumptions, the MSA decomposition will result in optimal coverage 
because the total cost of covering the sub regions is the minimum for this class of 
solutions. 

 

 

Figure 38: The number of turns is the main factor in the cost difference of 

covering a region along different sweep directions 

 

This algorithm first decomposes the coverage region into cells based on multiple 
line sweeps and then applies dynamic programming to group the cells into sub regions 
and assign sweep directions to each sub region. 

For each edge orientation (of the boundary, a hole, or their convex hulls), a line 
sweep is performed using a sweep direction perpendicular to such an edge. Each line 
sweep is done independently, but all decompositions are overlaid, in effect taking the 
dividing lines introduced by all line sweeps. 

The resulting cells are monotone with respect to all sweep directions under 
consideration. In addition, all no convex edges are extended until they hit an obstacle 
boundary or the coverage region boundary. 

From the initial decomposition, an adjacency graph is created (each node 
represents a cell, and two nodes are connected if they share an edge). This adjacency 
graph may have cycles, even if there are no holes in the coverage region. The graph 
G is the entire adjacency graph from the initial decomposition. 

The basis of the dynamic programming formulation is to either split this graph 
into two sub graphs, thus creating two smaller sub problems, or to create one sub 
region from all the cells in G (and cover the entire sub region under one sweep 
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direction). If the graph is split, two (individually) connected sub graphs G1 and G2 are 
created. These sub graphs together contain all the edges from G except those that 
connect a node from G1 to a node in G2. 

The minimum sum of altitudes is: 

 

where i iterates over all possible ways to split the graph G into two connected sub 
graphs and C(G) returns the cost of covering all cells corresponding to nodes in G as 
one sub region. When there is only one node in the graph, S(G)=C(G). 

The function C(G) must consider all the sweep directions under consideration to 
determine the cost for covering the cells in G as a single region. For some (or possibly 
all) coverage directions, this sub region may not be monotone, in which case the cost 
is assigned, C(G) returns the minimum cost over all sweep directions under 
consideration. 

Figure 39 shows an example of the first level of decomposing a problem; Figure 
40 shows the three line sweep decompositions and the optimal solution produced by 
the MSA decomposition algorithm. 

 
Figure 39: The top box shows a coverage region and the initial decomposition, 

and the corresponding adjacency graph for the proposed MSA decomposition 

algorithm. There are 8 ways that this graph can be decomposed into two 

separate connected graphs, and the corresponding division of the coverage 

region is shown. The rightmost choice represents covering all cells as a single 

region. 
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Figure 40: Figures (a) through (c) show the three line sweep decompositions of 

this region. Figure (d) shows an optimal MSA decomposition produced by the 

algorithm. The sum of sub region altitudes for Figures (a) through (d), 

respectively, is 10, 7, 6.4, and 5.5. 

 

To sum up, the basic approach is the decomposing of the coverage region into sub 
regions, selecting a sequence of sub regions, and generating a coverage path that 
covers each sub region in turn. 

The MSA decomposition divides a coverage region into sub regions such that the 
sum of sub region altitudes is minimized. Behind this criterion is the idea that sub 
regions are covered with back and forth motion along rows perpendicular to the sweep 
direction. The number of turns at the end of rows is the most important factor 
affected by the orientation of the sweep direction. The number of turns is directly 
related to the sub region altitude (with respect to the sweep direction). 

An algorithm creates an initial decomposition by performing multiple line sweeps 
and extending no convex edges. Dynamic programming is then used to group cells in 
the initial decomposition into sub regions and to assign each sub region a sweep 
direction. 
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