
Version: 31/10/07 Number of pages: 61

Deliverable Number: D8 Additional Release

Title of Deliverable: Report on the state of the art analysis on navigation and

obstacle avoidance methodologies

Task/WP related to the Deliverable: WP 4

Due Date: -

Actual Submission Date: October 31st, 2007

Organisation name of lead contractor for this deliverable: ROBOTIKER

Other contributing partners: ORU, SSSA

Revision n° 1.6

Dissemination level: PU

(PU = Public; PP = Restricted to other programme participants; RE = Restricted to a group

specified by the consortium; CO = Confidential, only for members of the consortium)

Project acronym: DustBot

Project full title: Networked and Cooperating Robots for Urban Hygiene

Contract number: FP6-045299

Instrument Type: Specific Targeted Research or Innovation Projects

Priority: Information Society Technologies

Starting date: December 1st 2006 Ending Date: November 30th 2009

DustBot FP6-045299 October 31, 2007

2/61

Table of contents

1 Executive Summary...5

2 Obstacle detection and avoidance..6

2.1 Technologies for obstacle detection ..7

2.1.1 Vision sensors ...8

2.1.2 Active infrared sensors..8

2.1.3 Passive infrared sensors..8

2.1.4 Microwaves radar sensors ...8

2.1.5 Laser scanners (or laser range finders)9

2.1.6 Time-of-flight cameras..9

2.1.7 Ultrasonic range sensors (sonar) ..10

2.2 Test on sensors and results...10

2.3 Methodologies for obstacle avoidance ...18

2.3.1 Artificial Potential Field approach ..18

2.3.2 Virtual Force Field method (VFF) ..18

2.3.3 Fuzzy Controller for Obstacle Avoidance19

2.3.4 Vector Field Histogram method (VFH)19

2.3.5 VFH+ method ..20

2.3.6 VFH* method ..20

2.3.7 Traversability Field Histogram (TFH)20

DustBot FP6-045299 October 31, 2007

3/61

2.3.8 Dynamic Window Approach..21

2.3.9 Curvature Velocity Space method ...21

2.3.10 Beam Curvature method ..21

2.3.11 Nearness diagram Navigation..22

2.4 Preliminary conclusions ..22

3 Methodology and algorithms for robot navigation.................................24

3.1 Technologies for robot localization..25

3.1.1 GPS ...27

3.1.2 Active badge ...27

3.1.3 Active Bat ...27

3.1.4 Cricket..28

3.1.5 RADAR ...28

3.1.6 MotionStar magnetic Tracker ...28

3.1.7 Easy Living..29

3.1.8 Smart Floor ...29

3.1.9 Ad hoc location sensing...29

3.2 Algorithms for robot navigation ...31

3.2.1 Global and Local Path Planning...32

3.2.2 Genetic Algorithm (PtG) ..33

3.2.3 Random Planning (PtG)...37

3.2.4 D* Algorithm (PtG) ...39

DustBot FP6-045299 October 31, 2007

4/61

3.2.5 The Genetic Algorithm Planner ...40

3.2.6 Gradient Methods for Real Time Robot Control (PtG)41

3.2.7 Real-Time Visual Behaviours for navigating a mobile robot (PtG) 44

3.2.8 Sensor-based navigation by Minguez et al. (PtG)44

3.2.9 The Boustrophedon Cellular Decomposition (C)46

3.2.10 The Minimal Sum of Altitudes (MSA) Decomposition (C)..........51

4 References ...56

DustBot FP6-045299 October 31, 2007

5/61

1 Executive Summary

WorkPackage 4 (WP4) deals with the tasks related to robot localization and
navigation, avoiding the potential obstacles existing on the streets and public areas.
This document is the first deliverable issued within WP4, two months after the start of
activities in this workpackage. Its aim is to offer a clear view of the available devices,
methodologies and algorithms related to obstacle detection and avoidance, and robot
localization and navigation. This deliverable D8 “Report on the state of the art analysis
on navigation and obstacle avoidance methodologies” includes the actual state of art
regarding the technologies, methods and algorithms applied for those purposes.

Chapter 2 is focused on obstacle avoidance. This task will be carried out at two
levels within the DustBot controller. The high-level controller performs global obstacle
avoidance in the sense that it plans obstacle-free paths based on the available
representation of the environment. The low-level controller uses the current sensory
information from the obstacle avoidance sensory system and performs reactive
navigation, which is crucial in a non-static environment where the map cannot
represent all the obstacles. The chapter includes a description of the available devices
and technologies for obstacle detection (different types of cameras, infrared sensors,
microwave radar, laser scanner, ultrasonic sensor) and the results obtained from first
tests carried out.

A complete list of methodologies and algorithms for obstacle avoidance are also
explained. Their challenge is to use real-time data from the obstacle detection
hardware, calculate a safe trajectory to avoid collision with the obstacle and assure to
reach the globally defined goal position.

First, some algorithms for local path planning are explained: Artificial Potential
Field, Virtual Force Field (VFF), Fuzzy Controller, Vector Field Histogram (VFH). They
do not attempt to find an optimal path, a task that has to be performed by a global
path planner. Furthermore, the robot may get trapped in dead-end situations. In
order to solve that problem, improved algorithms have been proposed and are also
described in this chapter: VFH+ (it still is a local planner, but with better trajectory
generation), VFH* (it adopts a look-ahead verification by projecting the trajectory of
the robot several steps ahead and evaluating the consequences), Traversability Field
Histogram (TFH, applied to a Segway platform). Other methods take into account the
dynamic and cinematic features of the robot (Dynamic Window Approach, Curvature
Velocity Space, Beam Curvature). Other types of algorithms are represented by the
Nearness Diagram navigation methods (ND and ND+).

Chapter 3 is devoted to robot localization and navigation. An accurate
measurement of absolute position attitude and velocity of robots is mandatory for
implementing correct robot movements and path planning tasks. When attempting to
determine the absolute location, the choice is usually done within three major

DustBot FP6-045299 October 31, 2007

6/61

techniques: triangulation (using the geometric properties of the triangle to compute
object locations), proximity (measuring the nearness to a known set of points), scene
analysis (uses the features of a scene observed from a particular vantage point to
extract the location). Location system implementations generally use one or more of
these techniques to locate robots, objects and people.

The main characteristic to take into account analyzing the different typologies of
localization systems are the physical position (difference between the numerical and
the descriptive representation), absolute or relative position, accuracy and precision,
location emission, area covered, cost and limitations.

Several types of localization methods are explained and discussed: GPS (Global
Positioning System based on satellite signals), Active badge (based on infrared
technology, improved later on with Active Bat), Cricket (using ultrasound technology),
RADAR (measuring the signal strength and signal-to-noise ratio of signals that
wireless devices send), electromagnetic sensing, computer vision using 3D cameras
for stereovision, pressure sensors embedded on floor, and location measurement by
means of objects cooperating with other nearby objects (by sharing sensor data to
factor out overall measurement).

Finally, a section dedicated to navigation algorithms covers a list of existing
methods. In general, in path planning there are two situations: sometimes the mobile
robot has to go from one point to a goal, while in other cases it has to cover or sweep
all the area. Different conventional approaches have been developed to solve path
planning problems, such as cell decomposition, road map and potential field. Most of
these approaches are based on the configuration space concept. Conventional
approaches are not suitable for dynamic environments because they utilize a
sequential search algorithm to generate a single solution. This solution may become
infeasible when a change in the environment is detected and a new solution has to be
generated from scratch. To overcome the weakness of these approaches, researchers
have been trying to apply other techniques to solve this problem. This situation has
led to search new purely random planning methods to get a solution faster. This
section of the document describes the Genetic Algorithm, different versions of
Random Planning algorithms (RRT, Rapidly Exploring Random Trees), D* Algorithm,
Gradient method, real-Time Visual Behaviour, sensor based navigation, the
Boustrophedon cellular Decomposition and the Minimal Sum of Altitudes (MSA)
Decomposition.

2 Obstacle detection and avoidance
In order to operate in outdoor environments the robot must be equipped with a

high performance sensor system to gather the required information. This system must
be non-contact, and must meet the requirements concerning the authorized standards
(mainly the safety standard EN50100-1), in order for the robot to be sold with
conformity to the Machinery Directive.

DustBot FP6-045299 October 31, 2007

7/61

Currently several types of sensors (laser scanner and ultrasound, for example)
meet these requirements and are acceptable for mobile robots. The obstacle
avoidance sensory system should be technically diverse and redundant.

Obstacle avoidance will be carried out at two levels within the DustBot controller.
The high-level controller performs global obstacle avoidance in the sense that this
instance plans obstacle-free paths based on the available representation of the
environment. The low-level controller uses the current sensory information from the
obstacle avoidance sensory system and performs reactive navigation, which is crucial
in a non-static environment where the map cannot represent all the obstacles.

While the high-level controller typically needs to react to asynchronous events
(the arrival of a path or coverage request or an update of the map representation),
the low-level controller needs constant updates upon the arrival of new sensor
readings and gives control commands to the robot to avoid dynamic obstacles.

Obstacle avoidance in DustBot should also deal with constraints typical of outdoor
environments, such as pavements, steps, slopes or descents; their presence will be
detected by using the sensory systems. These obstacles may not be represented in
the maps, and can be static or changing over the time. It is very important to place
the sensors correctly in the robot. The obstacles must be detected to avoid the impact
with them. This is the reason why non-contact sensors will be used.

All the perimeter of the DustBot will be sensorised, and redundancy in the
information is necessary. It is important to avoid missing to detect obstacles. False
detections are of less importance although care has to be taken to prevent the robot
from stopping periodically to avoid contact with non-existing obstacles.

The exact location to place the sensors depends on the type of sensors and their
range of detection. Some sensors will be oriented to the floor, downwards, in order to
detect slopes, steps or descents and other ones will be oriented forwards to detect
other static objects in general or obstacles in movement, like pedestrians and cyclist,
for example.

2.1 Technologies for obstacle detection

The obstacle avoidance system will be able to detect obstacles and to know the
fundamental characteristics of them like, for example, their dimensions or whether
they are moving, so the detection system might identify, if possible, the type of
object. In order to detect objects in a non-contact way, sensors of different
technologies may be used.

DustBot FP6-045299 October 31, 2007

8/61

2.1.1 Vision sensors

The most common are cameras using CCD arrays. The images taken with the CCD
cameras will be compared to the ideal stage (without obstacles) of the maps. In this
way obstacles can be detected and if pattern recognition techniques are used these
obstacles can be identified. These techniques are very complex and have a high
computational cost, particularly in the case of a moving camera.

The use of several cameras and stereo vision techniques gives information about
the position the object relative to the DustBot.

Vision sensors are sensitive to light changes which may cause problems for mobile
platforms. DustBot is a mobile platform, so complementary information is necessary.
This information will be given by a system of video cameras located along the square
and street for robot localization and surveillance of the environment status like it is
explained in the proposal document (page 5).

2.1.2 Active infrared sensors

They can detect objects according to the angle of the infrared wave echo received.
Some of them only detect objects that are nearer than 30cm, others are working for
higher distances and are even able to determine the position of the object.
Nevertheless, the ranges of detection hardly exceed one meter, and this fact limits the
distance for the actuation of the robot in order to rectify the trajectory, mainly if the
object is in movement too.

2.1.3 Passive infrared sensors

Thermal infrared sensors detect objects according to the heat they emit. They are
useful for detecting pedestrians with pattern recognition techniques, though compared
to vision sensors they tend to have lower resolution. They also are sensitive to high
frequency intensity changes, and offer correct detections and a low number of false
detections.

The problem is their high cost and that they cannot measure distances. They only
detect motion and its direction.

2.1.4 Microwaves radar sensors

They are used to detect objects in short distances. Several sensors are used to
measure distances using triangulation techniques. With the analysis of the wave that
is reflected in the object some information about it can be obtained. The power
spectral density of the reflected wave gives information about the dimensions and the
dynamics of the obstacle (smaller dimensions involve narrower peaks). The reflectivity
depends on the type of material. The time to reflection gives the distance to the
object, the frequency of the reflected wave gives the velocity and the difference in

DustBot FP6-045299 October 31, 2007

9/61

phase among the sent wave and the received one gives the angle with respect to the
object.

2.1.5 Laser scanners (or laser range finders)

They can detect objects as far as 40 m with an accuracy of only ±5 cm in a 180º
field. They are fast in response, accurate, comparatively reliable in the presence of
smoke or dust and insensitive to light changes. They detect objects with at least a 5%
of reflectivity (almost everything). With these sensors information about the shape of
the object, the distance to the object and its relative velocity can be obtained. They
allow to obtain an echo from an object with remission value (the remission value
depends on texture, colour and reflectivity), which helps to identify the object. The
most commonly used laser scanners nowadays are 2D sensors. A severe drawback of
2D range scanners is that they are “blind” for obstacles that do not appear in the
perceived plane. Therefore, 3D laser scanners are more and more used in mobile
robotics. Nowadays these 3D laser range scanners consist of a 2D laser range scanner
mounted on a pan/tilt unit, which typically means that the robot has to be stopped in
order to make a 3D scan. However, laser range scanners that measure in more than
just a single plane are available or are currently being developed (example: SICK
scanner with several fixed planes).

2.1.6 Time-of-flight cameras

An alternative to 3D laser scanners is provided by time-of-flight (TOF) cameras.
This sensor is based on CMOS technology and offers depth measurements for each
pixel. TOF cameras are active sensors in that the scene is illuminated with modulated
infrared light. Depth measurements are obtained (without scanning) by measuring the
phase shift in each pixel (Ringbeck et al., 2007). Current TOF cameras such as the
Photon Mixer Device (PMD) provide intensity and depth measurements with a maximal
resolution of 160×120 pixels (19k PMD) up to an unambiguous range of 7.5 m at a
frequency of 15-30 Hz. The nominal depth resolution is specified as 6 mm.

TOF cameras have the potential to become a standard sensor for mobile robots
due to the large amount of 3D data they can deliver in real-time and because they are
based on relatively inexpensive CMOS technology. The currently rather poor resolution
can be increased by using data fusion with a standard CMOS camera (Andreasson et
al., 2006; Jenke et al., 2007). Since they rely on active illumination, TOF cameras
face problems with bright sunlight (with sophisticated background light suppression
techniques, outdoor operation is possible to some degree, however) and the sensor
technology is not yet fully mature.

DustBot FP6-045299 October 31, 2007

10/61

2.1.7 Ultrasonic range sensors (sonar)

They use the same operation principle as laser scanners. They are cheaper, but
less accurate. They also may present some drawbacks: potential interferences with
the environment or with the multiple sensors of the robot (crosstalk), false responses
due to specular reflections or porous surfaces of the obstacle, dependence on
temperature and humidity, comparatively small range capacity due to a signal loss of
approximately 0.06 dB/m for a 20 KHz signal (double loss if the reflected wave is
measured), and low angular resolution because of the difficulty to focus a sound
beam. This could be a drawback if detailed 3D modelling of the obstacles was
necessary, but it is not the case for the application considered here.

2.2 Test on sensors and results

As a low cost and powerful solution for object detection several active infrared
sensors as well as ultrasonic sensors have been evaluated. Their range and accuracy
are enough for the DustBot requirements.

Regarding the infrared sensors, both digital as well as analogue sensors with
different distance ranges have been considered.

For test purposes, 3 digital sensors for short range object detection have been
tested:

 Sharp GP2D15 (5-25 cm)

 Sharp GP2Y0D340K (5-40 cm)

 Sharp GP2Y0D02YK (5-80 cm)

In order to verify whether the sensors are insensitive to changing object’s
materials and surface textures, several experiments have been performed with clothes
worn by humans, a square wooden pole (10 x 10 cm), a metal cylinder (steel), a
stone and a plastic trash can.

The results of these experiments are represented in Fig. 1 – Fig. 3.

DustBot FP6-045299 October 31, 2007

11/61

0

0,5

1

1,5

2

2,5

3

0 10 20 30 40 50 60

Distance in cm

Vo
lta

ge
 in

 V

clothes
wood
metal
stone
plastic

Fig. 1: Distance Characteristics for Sharp GP2D15

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100 120

Distance in cm

Vo
lta

ge
 in

 V

clothes
wood
metal
stone
plastic

Fig. 2: Distance Characteristics for Sharp GP2Y0D340K

DustBot FP6-045299 October 31, 2007

12/61

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100 120

Distance in cm

Vo
lta

ge
 in

 V

clothes
wood
metal
stone
plastic

Fig.3: Distance Characteristics for Sharp GP2Y0D02YK

In general, good agreement with the data given in the data sheets of the sensors
can be observed. The 25 cm sensor reliably detected all kind of objects within a
distance of at most 25 cm. The 50 cm sensor detected the steel cylinder, which was
the object with the most reflective surface, at a distance of 45 cm whereas other
objects were detected even at farther distances. The 80 cm sensor as well showed the
desired results for the metal cylinder, which was correctly detected at a distance of 80
cm. Other objects with a less reflecting surface could only be detected when they
approached nearer to the sensor (up to 50 cm for textile structure of humans’
clothes).

In order to be able to detect objects that are farther away and to be able to
estimate their real distance, analogue sensors have been tested as well.

Two different types, one for short range detection and one for long range
detection have been considered:

 Sharp GP2Y0A02YK (20-150 cm)

 Sharp GP2Y0A700K0F (100-550 cm)

Again, experiments with different kind of materials have been performed to
evaluate the differences due to changing surface textures (see Fig. 4 and Fig. 5).

DustBot FP6-045299 October 31, 2007

13/61

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80 100 120 140 160

Distance in cm

Vo
lta

ge
 in

 V

clothes
wood
metal
stone
plastic

Fig. 4: Distance Characteristics for Sharp GP2Y0A02Y

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400 500 600 700

Distance in cm

V
ol

ta
ge

 in
 V

clothes
wood
metal
stone
plastic

Fig. 5: Distance Characteristics for Sharp GP2Y0A700K0F

DustBot FP6-045299 October 31, 2007

14/61

The general behaviour fits quite well to the characteristics given in the data sheet
though some discrepancies especially for non metallic objects have been determined.
The 150 cm sensor is able to detect all kinds of objects up to distances of about 1m.
Textile surface of human clothes and the steel cylinder were even detected at a
distance of 130 cm. Due to different response for different materials it is not possible
to determine the exact distance of the detected object.

A similar behaviour was observed for the 550 cm sensor. Again qualitatively
similar results were obtained for different materials though quantitative differences
were observed. All kind of objects could be detected up to a distance of at least 4m
whereas the strongly reflecting steel cylinder was even detectable up to a distance of
6m.

Furthermore, experiments were conducted to evaluate the angular deviance from
the centreline, to check whether it is acceptable for correct detection. It was observed
that the detectable field is rather a small cylinder than a cone. In order to be able to
detect objects they have to be straight in front of the sensor (in its centreline) with a
possible lateral deviation of few centimetres (1-3 cm) in horizontal as well as in
vertical direction. Objects that are out of this narrow beam will not be detected. In
order to avoid the use of a high number of sensors, a solution could be the mounting
of one (or various) sensors on a servo for scanning a wide range in front of the robot.
A combination of several fixed sensors (e.g. at the side area of the robot where
intrinsic scanning is performed) and sweeping sensors will lead to better results.

As a low cost alternative to infrared sensors ultra sonic sensors have been tested.
The performance of the ultra sonic ranger SRF05 (S320111) has been evaluated in a
similar manner as above to check for differences for various materials and
geometries.

The distance measurement of up to 4m given in the data sheet could well be
verified for all tested objects and surface textures as long as the objects were placed
perpendicular to the sensors centreline (see Fig. 6).

DustBot FP6-045299 October 31, 2007

15/61

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

0 50 100 150 200 250 300 350 400 450

real Distance in cm

m
ea

su
re

d
Di

st
an

ce
 in

 c
m

Fig.6.: Measured characteristics for SRF05

In the corresponding data sheet it is stated that the beam pattern is conical and
that it is not possible to reduce or change the beam width (see Fig. 7).

Fig. 7: Beam pattern and beam width (obtained from SRF05 data sheet)

In several experiments the real behaviour of the sensor was tested and
differences for varying object dimensions were detected. A rather thin wooden pole

DustBot FP6-045299 October 31, 2007

16/61

(10 cm) could only be detected inside a cone with an opening angle of 6° whereas the
big frontal area of a plastic trash can reflect more easily the ultrasound, so it is
detectable in a range of about 40° (both measurements performed at a distance of
2m – see Fig. 8). It has to be stated though that objects out of the centreline will
appear to be further away from the sensor than they actually are. The reason for this
behaviour is that the reflection of the ultrasound wave is weaker which makes the
sensor “see” the object farther away than it really is.

Fig. 8: Detectable range for objects of different size (α=6° for a 10x10 cm pole and β=40° for

a trash can)

In comparison to the tested infrared sensors, less sensitivity to angular deviation
and thus a wider detection range can be confirmed. Nonetheless, difficulties with
objects with a small frontal area and especially with thin objects will arise, if they are
not exactly in front of the sensor (in its centreline).

A further problem of ultrasonic sensors is that objects which are not placed
perpendicular to the sensor’s centreline are difficult to detect because the ultrasonic
wave is not reflected back to the sensor. A 10x10 cm pole could not be detected when
it was turned 45° even if it was located precisely in the centreline, whereas its
detection was not a problem for perpendicular placement (measurements again
performed at a distance of 2m – see Fig. 9).

DustBot FP6-045299 October 31, 2007

17/61

Fig. 9: Correct detection of a 10x10 cm pole for perpendicular placement, and no detection for

the same pole turned by 45°

To evaluate the angular sensitivity of the sensor, experiments with a large planar
surface were performed as well. For an angular deviation of α >=20° it was impossible
to correctly detect the distance of the plane (measurements again performed at a
distance of 2m – see Fig. 10).

Fig. 10: Failure of distance measurement at an angular deviation of α=20°.

In order to evaluate the behaviour of commercial ultra sonic sensors, experiments
with sensors integrated in the bumper of a commercial standard vehicle were
performed. As for the former experiments, different materials and geometries were
used and the distance of detection was measured. Slight differences could be
observed but as for the tests with the SRF05 ultra sonic ranger, they were mainly

DustBot FP6-045299 October 31, 2007

18/61

caused by varying shapes rather than by varying materials. Reliable detection was
observed for all kind of obstacles between 100cm for the wooden pole and 150cm for
the stone.

2.3 Methodologies for obstacle avoidance

Obstacle avoidance is one of the most important tasks in mobile robotics. The
challenge for obstacle avoidance algorithms is to use real-time data from the obstacle
detection hardware (sensors, cameras, laser range finders,…), calculate a safe
trajectory to avoid collision with the obstacle and assure to reach the globally defined
goal position. In the case of a cleaning robot this is even more complicated as it is not
only about eluding obstacles but also about performing autonomous coverage tasks.

In general, the here presented methods are local path planners that are based on
the principle of reactive navigation. The robot has to react in real-time to the signals
read by the sensors. This is necessary when autonomously moving a robot in a partly
unknown environment.

2.3.1 Artificial Potential Field approach

Already in the 80’s first works have been published concerning real-time obstacle
avoidance. The wall following method was amongst the first that was presented as
possibility for obstacle avoidance. Due to the inherent limitations of this method, soon
thereafter more general methods like the artificial potential field approach (Khatib,
1985) were presented. The idea of this approach is that obstacles exert a virtual
repulsive force to push away the robot from obstacles and a virtual attractive force to
guide the robot to the goal position.

2.3.2 Virtual Force Field method (VFF)

Combining the method of Khatib with the concept of Probabilistic Occupancy Grid
maps developed at Carnegie-Mellon University (Moravec and Elfes, 1985), Borenstein
presented the Virtual Force Field (VFF) method in 1989 (Borenstein and Koren, 1989).
In comparison to edge detection methods these approaches can work well with
uncertain information as they respond to clusters of high likelihood for the existence
of an obstacle which results in an increased robustness of the algorithm in the
presence of false readings. Furthermore, updating the grid-map with sensor
information and using the grid-map for navigation are two independent tasks that are
performed asynchronously. Another advantage is their computational efficiency which
together with the other properties made virtual force field methods very popular.

Problematic is the fact that in their basic implementation these algorithms will get
stuck in local minima which are caused by U-shaped obstacles. Borenstein has

DustBot FP6-045299 October 31, 2007

19/61

presented various heuristic rules to recover from different trap situations. One
recovery algorithm is the wall following method (WFM) which guides the robot out of
local minimum traps by following the obstacle wall until the way to the goal position is
free again. By applying this algorithm it is possible to avoid most trap situations.

2.3.3 Fuzzy Controller for Obstacle Avoidance

A completely different approach for the robot control was presented by Uribe and
Urzelai (Uribe and Urzelai, 1998) who propose the use of a fuzzy controller for
obstacle avoidance. Depending on the current perception of the robot’s sensors the
controller derives the variables for the vehicle’s orientation and acceleration. The
obtained trajectories are smooth and the results are satisfactory after tuning the
membership functions. Nevertheless, the behaviour of the robot is similar to artificial
potential field methods what means that it may easily get trapped by local minima.
Only a combination with wall following algorithms can avoid that the robot remains
stuck in this kind of situations.

2.3.4 Vector Field Histogram method (VFH)

Analyzing the reasons for the shortcomings of the VFF method, Borenstein and
Koren came up with an improved algorithm denominated Vector Field Histogram
(VFH) (Borenstein and Koren, 1991). The main problem of the VFF method lies within
the fact that all repulsive forces from different obstacles are resumed to one force
vector. A simple example for a malfunction of the algorithm is a robot passing through
a doorway. In that case the robot could be detained from entering the doorway as
repulsive forces resulting from both sides of the doorway push the robot away.

In difference to the VFF method the VFH method uses a two-stage data reduction
technique. In the first reduction-step the perception of the robot’s sensors updates the
two-dimensional Cartesian histogram grid similar to the VFF method. In the next step,
a one-dimensional polar histogram is constructed around the robot’s momentary
location. As in the VFF method, only an active window centred at the current robot
position is considered for the calculation of the polar histogram.

The values for the drive and steer controllers are now calculated by the current
goal direction and the histogram value in this direction. If the histogram value is
below a prescribed threshold, the path to the goal is free and the robot moves in this
direction. In case of exceeding this threshold, a valley is searched in the polar
histogram close to the current goal direction and the robot is moved in this direction
thus eluding a collision with the obstacle that impedes straight motion.

In case of narrow valleys the algorithm is able to decide whether the robot will fit
through this narrow passage by choosing a centred path through the valley.

Nevertheless, it has to be stated, that the VFH method is a local path planner as
well as earlier presented algorithms. It does not attempt to find an optimal path, a

DustBot FP6-045299 October 31, 2007

20/61

task that has to be performed by a global path planner. Furthermore, the robot may
again get trapped in dead-end situations. Several heuristic rules can be applied to
resolve these problems even though the resulting path will still not be optimal.

2.3.5 VFH+ method

A major improvement of the VFH method has been presented in 1998 by Ulrich
and Borenstein (Ulrich and Borenstein, 1998). A first feature of the so called VFH+
method is the use of a theoretically determined low-pass filter to compensate for the
width of the robot. Second, instead of using one threshold value for the calculation of
the polar histogram, two threshold values are used in the VFH+ method. This
improves the movement of the robot in environments with several narrow openings
and avoids bringing the robot close to an obstacle. Maybe the most interesting feature
of the VFH+ algorithm is the fact that it takes into account the dynamics and the
kinematics of the robot. This is achieved by assuming that the possible trajectories of
a mobile robot are based on circular arcs and straight lines. The radius of the arcs
mostly will be directly dependant on the current speed of the robot. Thus, for a given
speed of the robot it can be checked which directions may be dynamically blocked by
obstacles. Algorithmically this is achieved by employing additional steps to the data
reduction process. In particular, the information of dynamically blocked directions is
added to the polar histogram obtaining a so-called masked polar histogram. All these
features together lead to smoother robot trajectories and greater reliability.

2.3.6 VFH* method

In 2000 another improvement of the VFH+ algorithm has been presented by
Ulrich and Borenstein (Ulrich and Borenstein, 2000). Whereas VFH+ is a purely local
obstacle avoidance algorithm, the VFH* algorithm adopts a look-ahead verification by
projecting the trajectory of the robot several steps ahead and evaluating the
consequences. Although the algorithm is not purely local anymore and an A* search
algorithm has to be executed, it performs still sufficiently fast to come up with the
requirements for a real-time algorithm. The general idea of the algorithm is based on
the VFH+ algorithm but instead of evaluating only the cost function for the current
free directions, the cost function is calculated looking various steps ahead summing
up the costs of the single branches.

2.3.7 Traversability Field Histogram (TFH)

Interesting for the Dustbot project is a work presented by Ye and Borenstein
describing Obstacle Avoidance for a Segway Robotic Mobility Platform (Ye and
Borenstein, 2004). This robotic platform is foreseen to be employed in the task of
picking up bin cans from citizens. The main sensor in the system is a SICK 2D laser
rangefinder which is mounted on the front end of the Segway RMP and looks forward

DustBot FP6-045299 October 31, 2007

21/61

and downward at an angle of -10° from the horizon. Thus, it is possible to scan the
environment in a distance of 5 meters and the recorded data are registered in a 2-
dimensional array. Obstacles or surface imperfections are represented with a value of
their height in the corresponding element of the array. This information is used by the
Terrain Traversability analysis TTA module which creates a Traversability Map.
According to the traversability indices (TI) the local path planner generates steering
and velocity commands to avoid cells with high TIs. The local path planner bases on
the VFH concept but is extended by the information provided within the Traversability
Map. Thus, it enhances the capability of the VFH approach from obstacle avoidance on
flat ground to obstacle navigation on non-flat ground. The resulting algorithm is
denominated Traversability Field Histogram.

2.3.8 Dynamic Window Approach

An approach was presented by Fox (Fox et al, 1997) taking into account the
dynamic and kinematic constraints of the robot similar to the VFH+ algorithm. The
method is called dynamic window approach and considers only admissible velocities
which can be reached within the next time interval and which allow the robot to stop
safely. The combination of translational and rotational velocity within the dynamic
window is then chosen by maximizing an objective function.

2.3.9 Curvature Velocity Space method

Another method using a related approach is the curvature velocity space method
(CVM) presented by Simmons (Simmons, 1996). This method chooses a point in the
linear-angular velocity space which satisfies some constraints and maximizes an
objective function. This objective function tries to move the robot close to the
commanded direction at the highest feasible speed, while travelling the trajectory with
the largest clearance from obstacles. One problem of this approach is the fact that in
certain cases the largest free trajectory leads away from the target position by not
finding openings in the way to this position.

2.3.10 Beam Curvature method

Fernández et al proposed an improvement for the curvature velocity space
method with a radial directional method (beam method) (Fernández et al, 2004). This
beam curvature method (BCM) holds the advantage that it not only maximizes the
objective function but also takes into account the local direction for a collision-free
space by radial projection. For that reason, BCM will find openings faster and more
reliable than CVM which results in an increment in the response time to the robot.
Furthermore, it will create smoother trajectories and in general reach the goal location
faster than CVM.

DustBot FP6-045299 October 31, 2007

22/61

2.3.11 Nearness diagram Navigation

The nearness diagram (ND) navigation approach is a different method that was
presented by Minguez and Montano (Minguez and Montano, 2004). Similar to the VFH
method a polar histogram is considered to derive actions to be taken for the robot. In
difference to former methods a binary decision tree is used to derive the currently
best suited action in dependence of the sensory information. Several criteria define
the robots current situation. This set of situations is made up distinguishing whether
the robot is in a low or high safety area, whether obstacles are only on one or on both
sides of the free driving area, whether the goal location lies within the free driving
area or whether the free driving area is narrow or wide. This representation is
unambiguous and complete and hence fulfils the situated-activity paradigm of
behavioural design (Arkin, 1999). According to each situation, an action is defined to
solve the reactive navigation task. Although the actual realization differs in some
points from the formerly presented VFH+ and VFH* algorithms, the final performance
seems to be quite similar. The ND approach avoids local trap situations and is able to
traverse narrow corridors without oscillation. One advantage of this approach is that
smooth behaviour in cluttered environment is achieved without the necessity of tuning
parameters. The divide and conquer strategy based on navigational situations
(position of the robot, obstacles and goal position) significantly simplifies navigation
thus enabling this technique to deal with more complex navigation scenarios.
Nonetheless, like other local obstacle avoidance methods, this approach can not
exclude the possibility to get caught in trap situations when the obstacle is not
completely visible.

The ND+ method (Minguez, Osuna and Montano, 2004) improves the previous ND
method with new navigational situations and a new design of the motion laws (to have
motion continuity in the most common transitions between situations). Another
advantage of the ND+ method is that works at more than 1000 Hz, thus the reaction
to the evolution of the scenario is very rapid and it can be used when required without
imposing a significant time penalty.

2.4 Preliminary conclusions

Not a unique type of sensor is able to detect and identify all kind of obstacles in
any situation. That is the reason why in DustBot system MULTISENSOR solution is
recommended. Different solutions are proposed:

 SEVERAL ULTRASONIC SENSORS: They can be placed in the perimeter of
the robot, oriented downwards, to the floor to detect slopes, descents or
steps and at a height depending on their range of detection. The number of
sensors to be used will depend on the dimension of the robot and on the
required field of detection.

DustBot FP6-045299 October 31, 2007

23/61

 OTHER SENSORS for detecting moving obstacles, like pedestrians and
cyclists and objects in general: They can be oriented forwards and different
kinds of combined solutions may be proposed:

 Vision sensors (+ PMD cameras) + infrared sensors.

 Ultrasonic sensors + infrared sensors.

 Microwaves radar sensors + vision sensors.

 Laser scanners + vision sensors.

 Laser scanners + microwaves radar sensors + vision sensors.

In order to decide the number and exact types of sensors, the following data
should be fixed. They mainly depend on dimensions and movement characteristics of
the DustBot:

 Time to respond.

 Output time.

 Range.

 Accuracy.

 Repeatability.

 Resolution.

 Sensibility.

 Linearity.

DustBot FP6-045299 October 31, 2007

24/61

3 Methodology and algorithms for robot navigation

Navigation of Mobile Robots covers a large spectrum of different technologies and
applications. It draws on some very ancient techniques, as well as some of the most
advanced space science and engineering.

"Mobile Robot Navigation" covers a large spectrum of different systems,
requirements and solutions.

The physical scale of a device's navigation requirements can be measured by the
accuracy to which the mobile robot needs to navigate - this is the resolution of
navigation. These requirements vary greatly with applications; however a first order
approximation of the accuracy required can be taken from the dimensions of the
vehicle itself. Any autonomous device must be able to determine its position to a
resolution within at least its own dimensions, in order to be able to navigate and
interact with its environment correctly.

At the small end of the scale there are robots just a few centimetres in size, which
will require high precision navigation over a small range (due to energy supply
constraints), while operating in a relatively tame environment. At the other end of the
scale there are Jumbo jet aircraft and ocean going liners, each with some sort of auto-
pilot navigation, which requires accuracy to a couple of meters (or tens of meters),
over a huge (i.e. global) range, in somewhat more rugged conditions.

Three terms are used in order to help in categorizing this scale of requirements:

 Global navigation, which is the ability to determine one's position in
absolute or map-referenced terms, and to move to a desired destination
point.

 Local navigation, the ability to determine one's position relative to objects
(stationary or moving) in the environment, and to interact with them
correctly.

 Personal navigation, which involves being aware of the positioning of the
various parts that make up oneself, in relation to each other and in
handling objects.

With the jet auto-pilot example Global navigation is the major requirement, for
cruising between continents. Local navigation becomes necessary where the aircraft is
expected to fly autonomously in crowded airways or on approach to the runway on
landing. As for the DustBot project, personal navigation is not an issue, as the vehicle
is, fundamentally, one object, and should (hopefully) never come into contact with
any other significant objects while under autonomous control.

The "micro" robot on the other hand, is almost exclusively interested in Personal
and Local navigation. Such devices are rarely concerned with their position globally,
on any traditional geographic scale. Instead their requirements are far more task

DustBot FP6-045299 October 31, 2007

25/61

based - they are concerned with their immediate environment, in particular relative to
any objects relevant in the successful completion of their task. This involves Personal
navigation, when it is in contact with other objects, and Local navigation for actual
movement.

In general, the main focus of the scales of navigation is as follows,

 Global: getting between end locations.

 Local: carrying out a task while at a location.

 Personal: monitoring of the individual robot and anything in contact with it.

3.1 Technologies for robot localization

Localization is a key component in many successful autonomous robot systems
(Thrun, 2001). An accurate measurement of absolute position attitude and velocity of
robots is mandatory for implementing correct robot movements and path planning
tasks. By some authors the robot localization problem has been stated as the most
fundamental problem to providing robots truly autonomous capabilities (Cox, 1991).

The automatic localization has been addressed over the years using several
methods. Many systems have been developed aiming at solving slightly different
problems. These systems own very different features: they are based on different
physical phenomena for estimating the robot’s position; they present different power
requirements and different resolution in time and space.

The general localization task presents a number of increasingly difficult problem
instances (Thrun, 2001). In the position tracking problem the robot starts from a
known location. The objective is to keep track of the position of the robot during the
navigation through the environment. Techniques addressing this problem are called
tracking or local techniques (Fox, 1999). If the robot acquires relative measurements
we talk of dead reckoning: this technique has been used for a long time, ever since
people started travelling around. The position estimates are based on last estimated
positions and on measured speed and direction of travel: this cause an error in
determining the robot’s location increasing over time. In robotics, dead-reckoning is
usually performed by odometry or using inertial sensors ((Borenstein, 1996).The
problem of determining the position of a robot when the initial position is not known is
referred to as the wake-up robot (also called “knidnapped robot”) or global positioning
problem. This is a more difficult problem than dead-reckoning, because the robot has
to localize itself not relying on the knowledge of its starting location. Methods
addressing this problem are called global techniques (Fox, 1999).

To determine the location the choice usually falls within three major methods:
triangulation, proximity and scene analysis.

DustBot FP6-045299 October 31, 2007

26/61

When attempting to determine the location, the choice is usually done within
three major techniques: triangulation, proximity, scene analysis.

• The triangulation technique uses the geometric properties of the triangle to
compute basing on some measurements the robot’s location. Triangulation can be
done using multiple distance measurements between known points (lateration), or
using measures of angles or bearing relative to points with known separation
(angulation).

• The proximity location sensing technique measures the nearness to a known set
of points, by using a physical phenomenon with limited range. Three general
approaches to this technique are: detection of the physical contact, monitoring of the
wireless cellular access points and observation of ID system (such as RFID).

• The scene analysis location technique uses the features of a scene observed
from a particular vantage point to extract the location of the observer of the object in
the scene.

Location system implementations generally use one or more of these techniques
to locate robots, objects and people. More details on these techniques are available in
literature (Hightower, 2001a).

Discussing and classifying localisation system implementations many issues arise.
These issues do not generally depend on the technologies or techniques a system
uses. The main characteristic to take into account analyzing the different typologies of
localization systems are the following:

 Physical position or symbolic location; it is the difference between the
numerical or metric representation (i.e. GPS) and the descriptive or
semantic representation (i.e. in the kitchen);

 Absolute or relative position (as exposed above);

 Accuracy and precision;

 Localized Location Computation; some systems require the located object
to periodically broadcast, respond with, or otherwise emit telemetry to
allow the external infrastructure to locate it;

 Scale; it is the area covered by the infrastructure that localizes the robot
and the number of robot that can be localized simultaneously;

 Cost;

 Limitations.

A summary of the main localization technologies (both commercial and research
product) are reported in Table 1 (from Hightower, 2001b); in this table the most
important characteristics of such technologies are analyzed and compared. A detailed
overview of the considered technologies is also reported below.

DustBot FP6-045299 October 31, 2007

27/61

3.1.1 GPS

The Global Positioning System is maybe the most diffusely used localization
system. GPS provides an excellent lateration framework for determining geographic
positions relying on signals coming from the GPS satellites. The worldwide satellite
constellation has reliable and ubiquitous coverage and, assuming a differential
reference or using the Wide Area Augmentation System, allows receivers to compute
their location with a precision of 1-5 meters (http:// www.garmin.com/aboutGPS/).
GPS is currently used in aircrafts, search-and-rescue teams, hikers and navigation
tools for cars.

However, GPS has some notable drawbacks. First, it does not function indoors or
underground. It also functions poorly whenever there are high buildings, mountains or
trees in the way blocking the signals from the satellites. Second, GPS is not accurate
enough for small scale navigation. Although it is accurate down to about a meter
under good circumstances, the resolution is typically too coarse to assist a robot when
turning or avoiding obstacles, for example. Of course, a GPS cannot detect obstacles,
which means that the robot has to have additional sensors anyway. Thus, although
GPS does give you a fairly good position fix under the right circumstances, and should
certainly be used to support navigation when available, it is by itself insufficient.

3.1.2 Active badge

The Active Badge location system (the first indoor badge sensing system) was
developed at Olivetti Research Laboratory (now AT&T Cambridge) (Want, 1992) and is
a cellular proximity system relying on diffuse infrared technology. Each agent system
uses a small infrared badge. The badge emits a globally unique identifier every 10
seconds or on demand. These data are collected from fixed infrared sensors around
the building. The Active Badge system computes the absolute locations of the agent
systems. Active Badge system present problems when fluorescent lighting or direct
sunlight are present because of the spurious infrared emissions these light sources
produce. The effective range of this system is several meters. This limits cell sizes to
small or medium-sized rooms. Multiple infrared beacons can be used in larger rooms.

3.1.3 Active Bat

Recently, AT&T lab has developed a location system called the Active Bat. This
system uses an ultrasound time-of-flight lateration technique to reduce the problems
Active Badges has (Harter, 1999). The system is based on Active Bat tags carried by
the users. The controller sends a request via short-range radio; a Bat answers
emitting an ultrasonic pulse to a grid of receivers fixed to the ceiling. The controller
sends together with the radio frequency request packet also a synchronized reset
signal to the sensors on the ceiling. The signal is sent using a wired serial network.

DustBot FP6-045299 October 31, 2007

28/61

The time interval between the reset and the arrival of ultrasonic pulse is measured by
each ceiling sensor. In this way, the ceiling sensor can compute its distance from the
Bat. The local controller then sends the measured distance to a central controller,
which performs the lateration. Statistical elaborations are carried out in order to
eliminate erroneous sensor measurements caused by a ceiling sensor hearing a
reflected ultrasound pulse not coming from the direct path from the Bat to the sensor.

3.1.4 Cricket

Another system complementing the Active Bat system (Priyantha, 2000) based on
ultrasound emitters is the Cricket Location Support System. The infrastructure is
created by the ultrasound emitters and the receivers that are embedded in the objects
that have to be localized. In this approach the objects perform all their own
triangulation computations. Cricket uses the radio frequency signal for synchronization
of the time measurement and to limit the time period during which the receiver takes
into consideration the sound it receives. Ultrasound pulses sensed after the end of the
radio frequency packet are recognized as reflections and are discarded. An algorithm
allows the use of multiple uncoordinated beacons in the same space.

3.1.5 RADAR

A system based on the IEEE 802.11 WLAN networking technology has been
developed by a Microsoft Research group. This system is named RADAR (Bahl,2000)
and it measures, at the base station, the strength and signal-to-noise ratio of the
signal sent by the wireless device. Basing on these data it computes the 2D positions
within a building. Two different versions exist: one using lateration and the other
using scene analysis.

3.1.6 MotionStar magnetic Tracker

The use of electromagnetic fields to measure the position of one object is common
in products for virtual reality and motion capture for computer animation. A classic
position tracking method is that proposed in (Raab, 1979). Ascension offers several
motion-capture solutions, such as the MotionStar DC magnetic tracker (Technical
Description of DC Magnetic Trackers, 2001). These systems generate axial DC
magnetic-field pulses from a transmitting antenna in a fixed position. The system
measures the response to the transmitted pulse in three orthogonal axes, then,
combining it with the constant effect of the earth’s magnetic field it computes the
position and orientation of the object. Other technologies have been used in virtual
environments and for computer animation. In (Bible, 1995) a CDMA radio ranging
approach has been proposed. Many optical, infrared and mechanical motion-capture
systems are produced by different companies. These systems, like Motion-Star, are

DustBot FP6-045299 October 31, 2007

29/61

used in controlled environments and are not conceived and designed to be scalable for
large environments.

3.1.7 Easy Living

The use of vision technology to localize an agent, or to localize objects in an
environment, has been investigated by several groups of researchers. One result is
the Microsoft Research’s Easy Living. This system employs the Digicolps real-time
stereo cameras to localize objects in a home environment (Krumm, 2000). The vision-
based systems typically use large amounts of processing power to analyze the
different frames captured by the vision system hardware. Multi-modal processing
(silhouette, skin colour and face pattern) have been proved (Darrell, 1998) to
significantly enhance accuracy in localization.

3.1.8 Smart Floor

In Georgia Tech’s Smart Floor system embedded pressure sensors (Orr, 2000)
capture footfalls, and the system uses the data for position tracking. With this system
the moving agent to be localized does not have to carry a device. The problem with
the Smart Floor, however, is the poor scalability because the floor of each building has
to be embedded with the pressure sensors.

3.1.9 Ad hoc location sensing

Ad hoc location sensing idea is to succeed in localizing objects without using an
infrastructure or central control. All the entities become mobile objects owning the
same sensing capabilities. Estimates of the positions are produced from the relative
distances measured between the entities. These are relative measurements that can
be absolute ones if some objects occupy known locations. For computing the distances
triangulation, scene analysis or proximity can be used. One locating system based on
this idea is the SpotON system (Hightower, 2000). It uses lateration using low-cost
tags. The tags use radio signal attenuation to estimate the distance from one tag to
another. The accuracy of the estimate is improved correlating multiple measurements.

DustBot FP6-045299 October 31, 2007

30/61

Technology Technique Absolute Relative

Accuracy and
precision
available Scale Cost Limitations

 GPS Radio time-of-
flight lateration

X 1-5 meters
(95-99%)

 24 satellites
worldwide

 Expensive
infrastructure

$100 receivers

 Not indoors

 Active
Badges

 Diffuse
infrared
cellular

proximity

X Room size 1 base per
room, badge
per base per

10 sec

 Administration
costs, cheap

tags and
bases

 Sunlight and
fluorescent

light interfere
with infrared

 Active Bats Ultrasound
time-of-flight

lateration

X 9 cm (95%) 1 base per 10
square

meters, 25
computations
per room per

sec

Administration
costs, cheap

tags and
sensors

Required
ceiling sensor

grid

 MotionStar Scene
analysis
lateration

X 1 mm, 1 ms,
0.1° (nearly

100 %)

 Controller per
scene, 108
sensors per

scene

 Controlled
scenes,

expensive
hardware

 Control unit
tether, precise

installation

 Cricket Proximity,
lateration

x x 4 × 4 ft.
regions (≈ 100

%)

 ≈ 1 beacon
per 16 square

ft.

 $10 beacons
and receivers

 No central
management

receiver
computation

 MSR RADAR 802.11 RF
scene analysis

and
triangulation

X 3-4.3 m (50
%)

 3 bases per
floor

 802.11
network

installation, ≈
$100 wireless

NICs

 Wireless NICs
required

 Easy Living Vision,
triangulation

X Variable 3 cameras
per small room

 Processing
power,

installation
cameras

 Ubiquitous
public

cameras

 Smart Floor Physical
contact

proximity

X Spacing of
pressure

sensors (100
%)

Complete
sensor grid

per floor

Installation of
sensor grid,
creation of

football
training
dataset

Recognition
may not scale

to large
populations

 SpotON Ad hoc
lateration

 X Depends on
cluster size

Cluster at
least 2 tags

$30 per tag,
no

infrastructure

Attenuation
less accurate
than time-of-

flight

Table 1 – Summary of main location sensing technologies.

DustBot FP6-045299 October 31, 2007

31/61

3.2 Algorithms for robot navigation

In Robot Navigation, on the theoretical side, a robot is faced with a number of
algorithmic issues that are geometric in nature. This includes mapping a given
environment, searching all possible locations in such an environment, or localizing the
robot’s position on a given map; typically, available information is visibility-based, but
motion-planning may also require the computation of a collision-free trajectory for a
rigid body, if one exists. These geometric aspects are pursued in the field of
Computational Geometry, where a lot of expertise has been developed, including
deep results on visibility problems and motion planning.

Another crucial feature of robot navigation is that path-planning has to be
performed without full knowledge of all necessary data; such information only
becomes available during the course of the robot’s motion, requiring optimization with
incomplete information. Complete knowledge of the scenario only becomes known
after a strategy has actually been applied. This means that an algorithm has to
protect against various possibilities (including faulty sensors or inaccurate data),
instead of basing its decisions on a complete description of the given information.

Motion planning is one of the important tasks in intelligent control of an
autonomous mobile robot.

In a generic way, the problem of motion planning lies in carrying the robot from
one initial point to a final one in a space free of collisions. This problem has largely
been studied (Latombe, 1991; Laumont et al., 1994; Muñoz, 1995), and there is a
great number of effective methods to solve the planning problem in real time, such as
potential fields, visibility graphs, Voronoi diagrams, etc. However, in complex
environments, there are more degrees of freedom, the robot presents more kinematic
restrictions, and the limitations of the methods and the necessary time to find a
solution are greater, too.

Path planning algorithms are classified according to completeness as exact and
heuristic (Hwang, 1992). Exact algorithms aim to find an optimal solution if one
exists, or prove that there is no feasible solution. On the other hand, heuristic
algorithms aim to search for a good quality solution in a short time. Exact algorithms
are usually computationally expensive and assume perfect knowledge about the
environment; however, heuristic algorithms may fail to find a solution for difficult
problems.

Different conventional approaches have been developed to solve path planning
problems (Latombe, 1991) such as cell decomposition, road map and potential field.
Most of these approaches are based on the configuration space concept (Lozano-
Pérez, 1979). Conventional approaches are not suitable for dynamic environments
because they utilize a sequential search algorithm to generate a single solution. This
solution may become infeasible when a change in the environment is detected and a
new solution has to be generated from scratch. To overcome the weakness of these

DustBot FP6-045299 October 31, 2007

32/61

approaches, researchers have been trying to apply other techniques to solve this
problem.

One known planning method is the potential fields method, which although it is
fast, has a problem with the local minima. Random generation algorithms are used to
obtain local planning towards a new minimum (Latombe, 1991).

This situation has led to search new purely random planning methods to get a
solution faster. Among the most widespread is the “Rapidly Exploring Random Trees”
(LaValle, 1998), called RRT. There are new versions of this method in order to
improve it, like “RRT- Ext-Con” (Kuffner y LaValle, 2000; LaValle y Kuffner, 2001) and
“ERRT” (Bruce y Veloso, 2002).

In general, in path planning there are two situations: sometimes the mobile robot
has to go from one point to a goal, while in other cases it has to cover or sweep all
the area. These situations are very different, so the path-planning requires different
solutions in each case.

In addition, sometimes the area to cover is known and mapped in advance, but in
other situations the environment is unknown. In fact, the tasks of planning
trajectories for a mobile robot have received considerable attention in the research
literature. Most of the works assume that the robot has a complete and accurate
model of its environment before it begins to move; less attention has been paid to the
problem of partially known environments.

There are many researches and studies to solve these problems. Different
algorithms exist to solve different and particular situations. Some of them are
explained in following paragraphs, grouped into two types of problems: “Point to Goal
(PtG)” navigation and “Coverage (C)” navigation.

3.2.1 Global and Local Path Planning

The path-planning problem is usually defined as follows (Sugihara, 1997): “Given
a robot and a description of an environment, plan a path between two specific
locations. The path must be collision-free (feasible) and satisfy certain optimization
criteria.” The path-planning component is divided in two sections: global path
planning and local path planning.

Global path planning requires the environment to be completely known and the
terrain should be static. In this approach the algorithm generates a complete path
from the start point to the destination point before the robot starts its motion. Local
path planning is done while the robot is moving and involve the algorithm capable of
producing a new path in response to environmental changes. Assuming that there are
no obstacles in the navigation area, the shortest path between the start point and the
end point is a straight line. The robot will proceed along this path until an obstacle is
detected. At this point, this path-planning algorithm is utilized to find a feasible path
around the obstacle. After avoiding the obstacle, the robot continues to navigate

DustBot FP6-045299 October 31, 2007

33/61

toward the end-point along a straight line (in this system the robot moves in a vertical
or horizontal direction, not diagonally; hence, it will try to approximate a straight line)
until (1) the robot detects another obstacle or (2) the desired position is reached. An
example of local path planning is shown in Fig. 22.

Figure 22. Path-planning example for local obstacle avoidance,

applied on a subsection of the search space.

3.2.2 Genetic Algorithm (PtG)

Robot path planning is part of a larger class of problems pertaining to scheduling
and routing, and is known to be NP-hard (NP-complete) (Obitko, 1998). Thus, a
heuristic optimization approach is recommended as shown by Hwang (Hwang, 1992).
One of these approaches is the use of genetic algorithms. A genetic algorithm (GA) is
an evolutionary problem solving method, where the solution to a problem evolves
after a number of iterations. A proposed solution with the GA method to the path-
planning problem is the best feasible path among the pool of all possible solutions.

There have been several contemporary applications of genetic algorithms to the
robot navigation problem. One approach is to combine fuzzy logic with genetic
algorithms (Arsene, 1999; Kubota, 1999; Pratihar, 1999). In this approach, the
genotype structure represents fuzzy rules that guide the robot navigation, so the
genetic algorithm evolves the best set of rules. While this approach can produce a
feasible path through an uncertain environment, the genotype structure becomes very
complex, as it needs to represent a variety of fuzzy rules. A complex genotype
structure can take a long time to process in a genetic algorithm, which affects the
realtime performance of the robot during navigation.

Another approach is to use genotype structures that represent local distance and
direction, as opposed to representing an entire path (Cazangi, 2002; Di Gesu, 2000;
Gallardo, 1998; Vadakkepat, 2000). While these are simple to process and allow for

DustBot FP6-045299 October 31, 2007

34/61

faster real-time performance, the local viewpoint of these methods may not allow the
robot to reach its target. Some methods have relatively simple genotype structures
that can represent feasible paths, but require complex decoders and fitness functions
(Hocaoglu, 2001; Sugihara, 1997; Xiao, 1997). This can also affect real-time
response.

Simplifying the models used to represent navigation paths will reduce the
processing time of the genetic algorithm. Research has focused on improving the
genetic algorithm performance by simplifying the genotype structure.

Genetic algorithms are a class of adaptive methods that can be used to solve
search and optimization problems involving large search spaces.

The following are general specifications for a GA-based local path-planning
approach:

 A map of the room in which the path planning takes place is known. The
path planner will determine the length and the width of the search space
and then apply a grid system to the room, similar to a chessboard. Thus,
the room is divided into rows and columns. The locations of known
obstacles are marked as “occupied cells” in the grid.

 The row and column coordinates of the start-point and the end-point of the
desired robot’s movement are also known.

 The robot is allowed to move on all “free” cells, where the centre of the
robot moves along an imaginary line from the centre of one cell to the
centre of another cell.

There are two types of robot movements:

 Row-Wise Movement: In a row-based movement, the robot starts moving
row by row from the start-point to the end-point. In other words, any
horizontal line in the search space will meet the path only once. Therefore,
in this movement, the robot always has to go forward and it does not have
the capability of going back (up) to the previous row.

 Column-Wise Movement: In a column-based movement, the robot will start
moving toward its destination column by column to the right. In other
words, any vertical line in the search space will meet the path only once.
Therefore, in this movement, the robot always has to move from left to
right, and it does not have the capability of moving back to the left.

The structure must have sufficient information about the entire path from the
start point to the end-point in order to be able to represent it. There are two variables
defined: Path-Localization and Path-Direction, and this technique only allows row-wise
movements.

A new instruction flag is defined for each path, called Path-Flag. This Flag instructs
the next movement type for each step of the movement, allowing the robot to plan

DustBot FP6-045299 October 31, 2007

35/61

either a row-wise or a column-wise movement according to the search space
arrangements, to combine both row-wise and column-wise paths while planning for a
single path. This causes the robot to fail for complex environments that require the
planning problem adds then a new variable: Path-Switch. The path has now more
flexibility to switch between the two movement modes.

Gene Structure: Path-Flag: a 1-bit flag for each chromosome. The main
responsibility of this bit is to tell the robot whether the next step of the movement is
row-wise or column-wise. During the entire robot movement, the decoder will check
this instruction bit before each movement step. The next movement type will be
based on the information provided by this flag.

Gene Structure: Path-Location: if the robot is required to go row-wise (Path-Flag
= 0), a gene’s position within a chromosome corresponds to a row-number (y-
coordinate). The value, stored in a gene, in a variable called path-location,
corresponds to a column number (x-coordinate).

Figure 23. Example of Path-Location for row-wise movement

On the other hand, for the column-wise movement (Path-Flag = 1), a gene’s
position within a chromosome corresponds to a column-number (x-coordinate). Then,
the value stored in that gene corresponds to a row-number (y- coordinate).

DustBot FP6-045299 October 31, 2007

36/61

Figure 24. Example of Path-Location for column-wise movement

Gene Structure: Path-Direction: The gene structure described so far only
represents vertices (‘corner points’ or ‘intermediate steps’) of a path. To send a robot
on a straight line directly from a centre of one vertex to the centre of the next vertex
would mean that the robot moves on a diagonal line across many adjacent cells. This
could cause problems if not all adjacent cells (that the robot is to traverse going from
one cell to the next) are free of obstacles, as shown in Figure 25. A better approach is
to go to the side (horizontal) first, turn, and then go down (vertical), or vice versa. To
indicate the first direction the robot will turn to proceed to the next vertex, a second
variable called Path-Direction is added to the gene structure. Direction is a two-state
variable (Boolean), which has either the value 1 or 0 for horizontal or vertical
directions respectively. The length of the direction array is one less than the length of
the location array, since there is no direction instruction for the last location.

Figure 25. Problem with diagonal movement of the robot

Now the connection, and therefore the path, from one vertex to the next one is
not a diagonal line, but a combination of a horizontal / vertical movement. Since the
first direction that the robot turns to can be either horizontal (solid line) or vertical

DustBot FP6-045299 October 31, 2007

37/61

(dotted line), there are two possible ways to get from one vertex to the next one for
each step. The introduced variable Path-direction indicates which of the two ways the
robot will use to go to the next vertex.

Figure 26. The path with horizontal / vertical instead of diagonal movement

It is obvious in Figure 26, one exception where the pathdirection variable will not
affect the robot movement direction is when the two consecutive movement steps are
either in the same column (for the row-wise movement) or in the same row (for
column-wise movement). In either case, there is only one way to go from one vertex
to the next one, which is a straight horizontal or vertical line.

Gene Structure: Path-Switch: to combine both row-wise and column-wise paths
while planning for a single path. Path-Switch variable enables the robot to switch back
and forth between a row-wise (r.w.) and a column-wise (c.w.) movement in a single
path. This array contains two switching numbers. Therefore, the robot can switch a
maximum of two times from row-wise to column-wise and vice versa within a search
space. The values that are stored in this array are integers and are in the range of 1
to the total length or width of the environment. The numbers stored in this array
indicate the location where the robot has to switch from r.w. to c.w. movement or vice
versa.

The switching numbers could be any number from 1 to the total number of the
search space rows or columns.

The number stored in each switching point indicates the location of the gene in
which the robot has to switch. For instance, switching numbers 2,5 means the robot is
switching two times: first at gene locations 2, then at location 5.

3.2.3 Random Planning (PtG)

Random Planning parts from a space of configurations divided in pieces that form
a regular grid. Each square has a value of potential according to the proximity to an
obstacle or the nearness to the start or goal points. The system generates a path with
a gradient vector derived form the potential field. This technique allows the system to
follow always the direction which minimizes the potential field value. The goal is to get
the absolute minimum which will be located in the destination configuration. But the

DustBot FP6-045299 October 31, 2007

38/61

resultant field can have some local minima, though always higher than the absolute
minimum.

When the system reaches a local minimum, the potential is not zero, but the
gradient keeps the system in the reached configuration. To solve this inconvenience it
resorts to a random generation method. Random movements are planed to let the
system leave the minimum and, then, it applies again the gradient method. This
process will continue until it finds a new minimum (Latombe, 1991).

With the success of the random methods the possibility to use this technique in an
exclusive way has emerged, eliminating the cost of processing for the calculus of the
potential. They have to be simpler, to compete in speed and to compensate the lack
of potential field information in the path planning algorithm. One of these methods is
called “Rapidly Exploring Random Trees”, RRT (LaValle, 1998). It does not require to
compute a potential field, and consequently saves processing time. In addition, the
RRT assesses an equiprobable exploration for the whole configuration space. Finally, it
is simple, fast and of easy extension towards complex stages.

RRT algorithm: its original objective was to build one exploration tree to cover
uniformly all the collision free space. This algorithm only has to generate a tree able
to explore in an equiprobable way the free space. It’s not the most appropriate
method to find the path among two points.

The adaptation of the RRT algorithm to connect one initial configuration to a final
one is obtained replacing the original RRT algorithm with the RRT- basic bidirectional
algorithm. This algorithm is based in the construction of two trees that leave from the
origin and destination points at the same time.

This algorithm has some improvements. It presents one very restrictive condition,
which requires that in the same iteration both trees meet in the same point. To get rid
of this restriction go, it has been developed the RRT-Ext-Con algorithm (Kuffner and
LaValle, 2000). The trees growth can be directed from one to another, instead of grow
in places where the interconnection is difficult. To achieve this the RRT-Ext-Ext
algorithm has been developed (La Valle and Kuffner, 2001).

The RRT-Ext-Ext algorithm makes agile the connection among the trees. With a
very little variation, it is possible to attribute an ability to let each tree to drive its
growth towards its homologous. This makes it be more competitive against other
algorithms purely random. In this way each tree spends half of its time exploring the
free space, and the other half, looking for its partner.

The RRT-Ext-Con algorithm, instead of adding a new segment to the tree, adds
consecutive segments until it reaches the objective configuration or one obstacle
(Kuffner and LaValle, 2000). It attenuates in this way the problem of the excessive
restrictiveness of the basic bidirectional algorithm. The only disadvantage is a greater
computational cost that is compensated in many stages with the greater efficiency of
the algorithm. This algorithm presents a great efficiency when it plans trajectories for
holonomic systems. On the opposite, like it is shown in (Cheng and LaValle, 2001),

DustBot FP6-045299 October 31, 2007

39/61

the RRT-Ext-Ext algorithm represents the best option when it tries to plan trajectories
for non holonomic systems.

The obtained trees in the application of the different RRT algorithms can result
very complex to be covered. Normally, the trees are susceptible of simplification (for
example, sometimes the end of both trees could joint with a simple straight line).

Therefore, in the practical applications of the RRT method, it is convenient to
apply a postprocess to the obtained trees to reduce their irregular topology. In this
way, like in other planning techniques, is common to apply simplification algorithms,
very fast and simple, which proceed from the information given by the planificator and
generate, in an iterative way, the simplest path. Such algorithms usually have a small
computational cost. The postprocessing algorithm must be designed according to the
particular application, constructing one more element for the planning system.

3.2.4 D* Algorithm (PtG)

This algorithm is capable of planning paths in unknown, partially known, and
changing environments in an efficient, optimal, and complete manner. The name of
the algorithm, D*, was chosen because it is dynamic in the sense that arc cost
parameters can change during the problem solving process.

It is assumed that the environment is completely known before the robot begins
its traverse. The optimal algorithms search a state space (e.g., visibility graph, grid
cells) using the distance transform (Jarvis, 1985) or heuristics (Nilsson, 1980) to find
the lowest cost path from the robot’s start state to the goal state. Cost can be defined
to be distance travelled, energy expended, time exposed to danger, etc.

Unfortunately, the robot may have partial or no information about the
environment before it begins its traverse but is equipped with a sensor that is capable
of measuring the environment as it moves. One approach to path planning in this
scenario is to generate a “global” path using the known information and then attempt
to “locally” circumvent obstacles on the route detected by the sensors (Goto, 1987). If
the route is completely obstructed, a new global path is planned. Lumelsky (Lumelsky,
1986) initially assumes the environment to be devoid of obstacles and moves the
robot directly toward the goal. If an obstacle obstructs the path, the robot moves
around the perimeter until the point on the obstacle nearest to the goal is found. The
robot then proceeds to move directly towards the goal again.

It is possible to generate optimal behaviour by computing an optimal path from
the known map information, moving the robot along the path until either it reaches
the goal or its sensors detect a discrepancy between the map and the environment,
updating the map, and then re-planning a new optimal path from the robot’s current
location to the goal.

There is a new algorithm for generating optimal paths for a robot, operating with
a sensor and a map of the environment. The map can be complete, empty, or contain

DustBot FP6-045299 October 31, 2007

40/61

partial information about the environment. Regions of the environment can be
unknown, the map may contain approximate information, stochastic models for
occupancy, or even heuristic estimates. The algorithm is functionally equivalent to the
brute-force, optimal replanner, but it is far more efficient.

3.2.5 The Genetic Algorithm Planner

A Genetic Algorithm Planner (GAP) was proposed for solving the path planning
problem in static and dynamic mobile robot environments. The GAP is based on a
variable-length representation. A generic fitness function is used to combine the
objectives of the problem. Different evolutionary operators are applied: some are
random-based, and others use problem-specific domain knowledge. Various
techniques are investigated to ensure that the GAP is appropriate for dynamic
environments.

In order to allow the algorithm to operate on the entire working space, vertex
graphs are used to represent obstacles in the robot environment. Each obstacle is
represented by an ordered list of vertices with no restrictions on the shapes or the
sizes of the obstacles.

A chromosome represents a path as a sequence of nodes, where each node
contains an “x” and “y” coordinate of a point. The first node is the starting point (or
the robot’s current location) and the last node represents the destination point. The
number of knot nodes (intermediate nodes) in the path is variable. By using this
representation the algorithm is able to search the entire space and adapt to the new
changes in the environment with no extra map adjustments. Figure 27 shows the
linked list data structure used to accommodate the variable length path. The initial
population is generated randomly, where each path has a random number of nodes.

Figure 27: Chromosome data structure

A feasible path is evaluated according to the length, smoothness and clearance. A
linear combination of these factors is illustrated with the following equation:

where wd, ws, and wc represent the weights on the total cost and dist(p),
smooth(p) and clear(p) are defined as follows:

 , where d(si) is the distance between two adjacent
nodes.

DustBot FP6-045299 October 31, 2007

41/61

 , where θi is the angle between the extension
of the two line segments connecting the ith knot point. α is the desired
steering angle and “a” is a coefficient.

 , where gi is the smallest distance from the ith
segment to all obstacles, and τ is the desired clearance distance the “a”
coefficient, which is referred to as the map coefficient which is a problem
dependent coefficient and is defined as follows:

Where A is the total map area, and OA is total obstacle area. Accordingly,
the smoothness and clearance factors increase for simple environments,
whereas it becomes small in a crowded environment.
Figure 28 illustrates all the components involved in the feasible path
evaluation function.

Figure 28 illustrates all the components involved in the feasible path evaluation function

An unfeasible path is evaluated according to the number of intersections with
obstacles and the ratio between the numbers of feasible segments and unfeasible
segments. A penalty function is used to make the least feasible path better than any
unfeasible path.

3.2.6 Gradient Methods for Real Time Robot Control (PtG)

Another method for local navigation, the gradient method, computes optimal
paths to waypoint goals. The method is efficient enough to be used for real-time

DustBot FP6-045299 October 31, 2007

42/61

control. It overcomes the limitations of other local control paradigms because it
computes a complete set of optimal paths to every point in the workspace, avoiding
local minima and other control problems.

Most current controllers are combinations of different techniques, using motion
planning for a global path and other techniques to deal with uncertain or unknown
objects. Motion planning generates an initial path based on prior knowledge of the
environment, and then the path is adjusted as the robot senses obstacles that lie in
the way of the path.

The gradient method, continuously calculates an optimal path to a waypoint goal.
The concept of optimality is derived by assigning costs to a path, based on its length
and closeness to obstacles, as well as any other criteria that may be chosen. The
gradient method computes a navigation function in the local space of the robot, such
that the gradient of the navigation function represents the direction of the lowest-cost
path at every point in the space. The method is efficient enough to be computed at a
10 Hz rate with modest computational resources. The gradient method can generate
the lowest-cost path in a static and completely known environment.

The navigation function assigns a potential field value to every point in the space.
Travelling along the gradient of the navigation potential yields the minimum cost path
to the goalset from any point in the space.

To find a path with minimum cost to some point in the goalset, that path is
represented by an ordered set of points in the sample space,

P={p1, p2,…}

Abbreviate a path that starts at point k by Pk.

The cost of a path is an arbitrary function of the (discretized) path, F(P).

Make the assumption that the path cost is separable into the sum of an intrinsic
cost of being at a point, along with an adjacency cost of moving from one point to the
next:

I and A can be arbitrary functions. I will represent the cost of traversing through
the given point, and will be set according to the domain characteristics, e.g., a high
cost will be assigned to being near an obstacle. Other possibilities are to have higher
costs for unknown regions, slippery regions, etc.

The path length can be taken into account by assigning A to be proportional to the
Euclidean distance the robot travels between the two points; then the sum of A gives
a cost proportional to the path length.

DustBot FP6-045299 October 31, 2007

43/61

A navigation function N is the assignment of a potential field value to every
element of the configuration space, such that the goalset is always “downhill” no
matter where you are in the space (Latombe, 1991). Navigation functions, unlike
potential field methods in general, have the characteristic that it is impossible to get
stuck in a local minimum, and no search is required to determine a direction to go to
arrive at the goalset.

The key idea behind the gradient method is to assign the navigation function at a
point to be the cost of the minimal cost path that starts at that point.

where as before, the path Pk starts at point k.

If the intrinsic costs are zero, then the navigation function just represents the
distance to the nearest goalset point. Travelling in the direction of the gradient of N
yields the fastest reduction of path costs, i.e., the minimum distance to a goalset
point. In the general case, travelling along the gradient is a minimum cost path to the
goalset.

Navigation functions for small-dimension spaces have been computed by a
wavefront algorithm (Akin, 1990; Thrun, 1998). The goalset points are assigned a
value of 0. At each iteration, the points with value n are expanded to their nearest
(rectilinear) neighbours, giving them a value of n+1 if they are not already assigned,
and are not obstacles. The process repeats until all points have been assigned. It
takes time of the order of the number of points in the space, which is why it can only
be used in small spaces.

The wavefront algorithm never backtracks, because at each point it advances the
navigation function only to those points that have a value one higher than any other
assigned point.

Linear programming is a generalization of the wavefront algorithm, which is called
LPN. The cost of LPN is again the order of the number of points in the space, and it
reduces to the wavefront algorithm under the appropriate conditions on the navigation
function.

Initially all goalset points are assigned a value 0, and every other point an infinite
cost. The goalset points are put in an active list of points. At each iteration of the
algorithm, it operates on each point on the active list, removing it from the list and
updating its neighbours.

It is possible to show that the LPN algorithm computes the least-cost path to
every point in the workspace. At each point in the workspace, the gradient of the
navigation function computed by LPN, if it exists, points in the direction of a least-cost
path to the goalset.

DustBot FP6-045299 October 31, 2007

44/61

The LPN algorithm runs in time proportional to the number of points in the
workspace. On a modest PC (266 MHz Pentium), a C implementation averages about
1 µs per workspace point. For a 10 m by 10 m workspace, with a grid size of 10 cm, it
will take 10 ms to calculate the navigation function. Thus, the LPN algorithm is
suitable for realtime control. Using a 10 Hz rate, it is fast enough to run the robot
efficiently at speeds up to 1 m/s.

3.2.7 Real-Time Visual Behaviours for navigating a mobile
robot (PtG)

The use of vision in mobile robotics has become wide spread. Humans have a
good sense of direction, and can navigate without using precise coordinates for
localisation (McCleary, 1974). In other methods, navigation is done relative to
landmarks (Schone, 1984). The goal is to provide a mobile robot with sufficient visual
behaviours to navigate freely in an unknown environment.

This method of using video signal produces obstacle avoidance by searching at
frame rate for free space in each frame of the video signal. While the robot is
travelling through the environment it could be given the purpose of finding a goal, and
then using this for navigational purposes. This is done by providing the robot with goal
templates (or landmarks).

The vision system continuously searches its input for the landmark template. If a
landmark template is detected, the robot can execute several actions. If at any time a
match is found a motion vector toward the landmark is sent to the robot. This will
guide the robot towards the goal. This is a visual servoing behaviour.

In a map, a landmark can be included together with information about its location
of a goal. This provides the robot with an internal representation of the goal. This is
similar to the idea of McFarland et al. (McFarland, 1993) of goal-directed behaviour.
This provides the robot with a desire to move towards a goal. The behaviour produces
a motion vector that is fed into the robot’s locomotion system resulting in motion
towards the goal. Combining this behaviour with the goal seeking behaviour results in
a behaviour which moves the robot between landmarks. The robot can navigate by
using visual landmarks as cues to robot actions. The position of the landmarks can be
changed without affecting the system, thus yielding a robust system.

3.2.8 Sensor-based navigation by Minguez et al. (PtG)

Up to now global navigation systems have been presented in this chapter whereas
local reactive path planners have only been discussed in an isolated manner in chapter
2.3. Especially in the case of a dynamic environment which is not completely
specifiable with an a priori map it is obvious that the overall problem cannot be solved
by these systems individually. Thus, it makes sense to focus on synthesizing a control

DustBot FP6-045299 October 31, 2007

45/61

mode that incorporates these methodologies, and not on extending both worlds
separately (Arkin, 1990).

Especially Minguez et al (Minguez, Montesano and Montano, 2004) have
performed extended research in this field. Their sensor-based robot navigation system
is formed by an architecture that integrates three modules with the following
functionalities: model construction, motion planning and reactive navigation.

Globally the system works as follows (Figure 29): given a laser scan and the
odometry of the vehicle, the model builder incorporates this information into the
existing model. Next, the information of obstacles and free space in the grid is used
by the planner module to compute the course to follow to reach the goal. Finally, the
reactive module uses the information of the obstacles contained in the grid and
information of the tactical planner to generate the motion (to drive the vehicle free of
collisions towards the goal). The motion is executed by the vehicle controller and the
process restarts with a new sensorial measurement.

It is important to stress that the three modules work synchronously within the
perception - action cycle.

Figure 29: Overview of the sensor-based navigation system

Model Builder Module:

The function of this module is to integrate the sensorial measures to construct a
model of the environment. A binary occupancy grid is chosen because it is an efficient
structure from which it turns out simple to obtain the free space (the one of interest
for the movement). The cells are assigned either free or occupied state by scanning
the workspace with a laser range finder resulting in high precision. The grid has a

DustBot FP6-045299 October 31, 2007

46/61

fixed size that represents a limited part of the workspace (large enough to represent
the portion of space necessary to solve the navigation task) and whose position is
recomputed to maintain the robot in its central zone. The design and supervision of
this module include three parts: (i) the use of a technique of scan matching to
improve the vehicle odometry, for example using the Iterative Dual Correspondence
algorithm (Lu, 1997), which searches for correspondences between two consecutive
laser scans in order to estimate the rigid motion. (ii) the integration of the laser
measures in the model, using the Bresenham algorithm (Foley, 1990), and (iii) the
supervision of model position to maintain the robot centred.

Planning Module:

This module uses a motion planner to obtain tactical information to avoid trap
situations and cyclical motions. In the course of the years several different motion
planners have been implemented to conduct this task (Montesano, Minguez and
Montano, 2006). In a first approach, the planner constructs a navigation function
(NF1) over the grid of the previous module. Then it computes a path to the
destination using a steepest descendent strategy. This navigation function is free of
potential minima (if a path exists, it is found), and it can be efficiently executed in real
time. In a first improvement a planner was developed by Minguez et al independently
but similar to the Gap Navigation Trees. The idea behind this planner is to construct a
graph of reachable points of the space, instead of an analytical path as many classical
planners do. The planner iteratively constructs a graph whose nodes are locations in
the space and the arcs are tunnels of free space that joins them. When the goal is
reached, the current tunnel contains a path to the goal. The advantage of this planner
is the computation time since in average it is more efficient than computing a local
path from scratch with a navigation function. Following this development the
application of the D* Lite planner was explored as well. The principle of this planner is
to locally modify the previous path (available from the previous step) using only the
changes in the environment. This strategy is by far more efficient than recomputing
the path from scratch (up to two orders of magnitude).

Reactive Module:

As reactive module the Nearness Diagram Navigation method (ND) and
subsequently the ND+ method came to use. For a closer description of this method
see chapter 2.3.11.

Next sections cover the “Coverage path planning”, which is the determination of a
path that a robot must take in order to pass over each point in an environment.
Applications include vacuuming, floor scrubbing, and inspection.

3.2.9 The Boustrophedon Cellular Decomposition (C)

The boustrophedon (literally means “the way of the ox”) cellular decomposition is
an exact cellular decomposition approach for the purposes of coverage. Each cell in
the boustrophedon is covered with simple back and forth motions. Therefore,

DustBot FP6-045299 October 31, 2007

47/61

coverage is reduced to finding an exhaustive path through a graph which represents
the adjacency relationships of the cells in the boustrophedon decomposition. Coverage
path planning determines a path that guarantees that an agent will pass over every
point in a given environment.

Figure 30: Boustrophedon Path

Cellular decomposition is a motion planning technique in which the free
configuration space (set of all robot configurations where the robot does not overlap
an obstacle) is decomposed into cells in such a way that the union of the cells is the
original free space. Each cell can be represented as a node in a graph, where adjacent
cells have an edge connecting their corresponding nodes. This graph is called an
adjacency graph. If each cell can be covered by the robot, then the floor coverage
problem reduces to determining a walk through the adjacency graph that visits each
node at least once.

One popular cellular decomposition technique, which can yield a complete
coverage path solution, is the trapezoidal decomposition (Latombe, 1991), also known
as the slab method (Preparata, 1985) in which the robot’s free space is decomposed
into trapezoidal cells. Since each cell is a trapezoid, coverage in each cell can easily be
achieved with simple back and forth motions (see Figure 30). Coverage of the
environment is achieved by visiting each cell in the adjacency graph. The trapezoidal
decomposition approach assumes that a vertical line, termed a slice, sweeps left to
right through a bounded environment which is populated with polygonal obstacles.
Cells are formed via a sequence of open and close operations which occur when the
slice encounters an event, an instance in which a slice intersects a vertex of a
polygon. There are three types of events: IN, OUT, and MIDDLE. Loosely speaking, at
an IN event the current cell is closed (thereby completing its construction) and two
new cells are opened (thereby initiating their construction). See Figure 31.

DustBot FP6-045299 October 31, 2007

48/61

Figure 31: In Event

An OUT event is the reverse: two cells are closed, and a new one is opened. See
Figure 32.

Figure 32: Out Event

The IN event can be viewed as one cell breaking up into two cells, whereas the
OUT event occurs as two cells merge into one. At a MIDDLE event, the current cell is
closed, and a new one is formed. The result of these operations is a free space that is
broken down into trapezoidal cells.

Unfortunately, the trapezoidal approach requires too many redundant back and
forth motion to guarantee completeness. Another drawback of the trapezoidal
approach is that it requires the environment to be polygonal.

The boustrophedon cellular decomposition is an enhancement of the trapezoidal
decomposition and is designed to minimize the number of excess lengthwise motions.
In essence, all cells between IN and OUT events are merged into one cell. Figure 33
shows the trapezoidal decomposition and Figure 34 the boustrophedon decomposition.
The boustrophedon decomposition has a fewer number of cells.

DustBot FP6-045299 October 31, 2007

49/61

Figure 33: Trapezoidal Decomposition

Figure 34: Boustrophedon Decomposition

In the boustrophedon cellular decomposition, like in the trapezoidal
decomposition, at an IN event, where the connectivity of the slice increases, the
current cell is closed and two new cells are opened (Figure 35).

Figure 35: In Event

Conversely, at an OUT event, where the connectivity of the slice decreases, the
two current cells are closed and one new cell is opened (Figure 36).

DustBot FP6-045299 October 31, 2007

50/61

Figure 36: Out Event

The difference between the trapezoidal decomposition and boustrophedon
decomposition approach is with the middle events: at the MIDDLE events, do not open
nor close a cell, but rather simply update the current cell.

A depth-first-like graph search algorithm outputs a path list that represents an
exhaustive walk through the adjacency graph. A walk through the path list constitutes
an exhaustive walk through the adjacency graph. Finally, the actual path for the robot
to take is computed using the above described path list. When the robot enters an
“unvisited” cell, the boustrophedic motion is planned, and then a path to the next cell
in the path list in planned. When the robot enters a “visited” cell, it simply plans a
path through that cell to the next cell in the path list. These two actions are repeated
until the end of the path list is reached, i.e., until each cell has been “visited”.

In the boustrophedon decomposition method, the middle event is replaced with
two more types of events: FLOOR and CEILING. FLOOR events correspond to vertices
that are on the top of the polygonal obstacle and the CEILING events correspond to
vertices that are on the bottom of the obstacle.

The input to the algorithm is a list of polygons whose vertices are listed in
counter-clockwise-order.

An event is a vertex of a polygon and may be associated with additional
information; it contains the location of the event, its type, and pointer(s) to the edge
(or edges) that is (are) associated with it. The event structure has up to two types of
pointers to edges: floor pointers and ceiling pointers. An IN event’s ceiling pointer
points to the next edge emanating from the event and the floor pointer points to the
previous edge terminating at the event. See Figure 37.

Figure 37: In Event

DustBot FP6-045299 October 31, 2007

51/61

Conversely, the OUT event’s floor pointer points to the next edge emanating from
it and the ceiling pointer points to the edge terminating at the event. A CEILING event
only has a ceiling pointer which points to the edge emanating from the event. A
FLOOR event only has a floor pointer which points to the edge terminating at the
event.

When considering a particular polygon, the algorithm first finds the IN event of
the polygon. The algorithm walks through the vertex list of a polygon until it
encounters the left-most vertex. This vertex, and its related information, is inserted
into an event list. Since the vertices are ordered in a counter clockwise fashion the
next sequence of vertices are CEILING events. Recall that although these vertices
correspond to the underside of the polygon, they are CEILING events because they
correspond to the ceiling of the cell that is immediately below the polygon.

The algorithm walks through the polygon list, inserting each vertex as a CEILING
event, until the algorithm encounters the right-most vertex. This vertex, and its
associated information, is inserted into the events list as an OUT vertex. The
remaining vertices correspond to FLOOR events.

As the events are encountered, they are inserted into an order events list sorted
by the x-coordinate of the event. The insertion process is O (n log n) where n is the
total number of edges (or vertices) in polygonal environment.

A cell can be represented by two lists: a list of floor edges and a list of ceiling
edges, both of which bound the cell. Therefore, the cell structure contains two
pointers to a list of edges: a floor pointer and a ceiling pointer. The cell structure also
contains a linked list of pointers to neighbouring cells. Finally, the cell structure has
two flags: visited and cleaned, which will be used in the algorithm.

3.2.10 The Minimal Sum of Altitudes (MSA) Decomposition (C)

In robotics, one basic approach to the coverage problem is to decompose the
region into sub regions, select a sequence of those sub regions, and then generate a
path that covers each sub region in turn.

Under certain assumptions, the cost to cover a polygonal sub region is
proportional to its minimum altitude. An optimal decomposition then minimizes the
sum of sub region altitudes.

A coverage algorithm must generate what it is called a coverage path, i.e. a
detailed sequence of motion commands for a robot over a specified region. An optimal
coverage algorithm would return a coverage path that minimizes, for example, the
time required to execute that path.

Several existing algorithms take the following basic approach to generating a
coverage path: the region to be covered is decomposed into sub regions, a Travelling
Salesman algorithm is applied to generate a sequence of sub regions to visit, and a
coverage path is generated from this sequence that covers each sub region in turn.

DustBot FP6-045299 October 31, 2007

52/61

These algorithms all use a single line sweep in order to decompose the coverage
region into sub regions, and these sub regions are individually covered using a back
and forth motion in rows perpendicular to the sweep direction. In existing algorithms,
all sub regions use the same sweep direction.

After finishing one row, the robot must turn around to start the next row,
minimizing the number of these turns is the most important factor in an efficient
solution. The number of turns is directly related to the orientation of the sub region
(measured along the sweep direction), so the optimality criterion is to minimize the
sum of sub region altitudes.

By allowing different sweep directions to be assigned to each sub region of a
decomposition, it can be produced a lower sum of sub region altitudes and thus a
cheaper coverage path: the minimum sum of altitudes (MSA) decomposition. An
algorithm to generate this decomposition creates an initial decomposition based on
multiple line sweeps and then uses dynamic programming to group sub regions and
assign sweep directions to each sub region.

Previous works exits about this decomposition:

 Choset and Pignon describe an off-line planning algorithm for polygonal
worlds which explicitly performs line sweep decomposition (the
“Boustrophedon” decomposition) and creates a sequence of sub regions
(cells) using an heuristic Travelling Salesman algorithm. Hert et al. describe
an online algorithm for non polygonal worlds which implicitly uses a line
sweep decomposition and a heuristic Travelling Salesman algorithm.
Schmidt and Hofner use an off-line planning algorithm to generate a
coverage path based on a line sweep decomposition.

 Kurabayashi et al. (Kurabayashi, 1996) describe an off-line algorithm for
planning coverage paths for multiple robots. It appears to generate a single
coverage path, based on both “direction parallel” and “contour-parallel”
motion. Zelinsky et al. (Zelinsky, 1994) describes a grid-based coverage
algorithm.

 More recent results include: Gabriely and Rimon, who formulated a
coverage algorithm based on travelling about the perimeter of a minimum
spanning tree that fills the coverage region; Butler et al. (Butler, 2000),
who created a distributed algorithm for multiple robots to cover an
unknown rectilinear environment; and Choset et al. (Choset, 2000) who
have extended the Boustrophedon decomposition to higher dimension
Euclidean spaces.

A coverage algorithm must return a coverage path: a detailed sequence of motion
commands for the robot to sweep over all points in the coverage region. Optimal
coverage is a difficult problem because it is not clear what an optimal coverage path
would look like; there are many qualitatively different coverage paths for a given
region.

DustBot FP6-045299 October 31, 2007

53/61

The time to cover a sub region using back and forth motion consists of the time to
travel along the rows plus the time to turn around at the end of a row. As illustrated
in Figure 38, covering a sub region in different directions produces rows of
approximately the same total length; however, there can be a large difference in the
number of turns required. Furthermore, turns take a significant amount of time - the
robot must slow down, make the turn, and then accelerate. It’s important therefore to
minimize the number of turns required, and this is proportional to the altitude of the
sub region measured along the sweep direction.

Under these assumptions, the MSA decomposition will result in optimal coverage
because the total cost of covering the sub regions is the minimum for this class of
solutions.

Figure 38: The number of turns is the main factor in the cost difference of

covering a region along different sweep directions

This algorithm first decomposes the coverage region into cells based on multiple
line sweeps and then applies dynamic programming to group the cells into sub regions
and assign sweep directions to each sub region.

For each edge orientation (of the boundary, a hole, or their convex hulls), a line
sweep is performed using a sweep direction perpendicular to such an edge. Each line
sweep is done independently, but all decompositions are overlaid, in effect taking the
dividing lines introduced by all line sweeps.

The resulting cells are monotone with respect to all sweep directions under
consideration. In addition, all no convex edges are extended until they hit an obstacle
boundary or the coverage region boundary.

From the initial decomposition, an adjacency graph is created (each node
represents a cell, and two nodes are connected if they share an edge). This adjacency
graph may have cycles, even if there are no holes in the coverage region. The graph
G is the entire adjacency graph from the initial decomposition.

The basis of the dynamic programming formulation is to either split this graph
into two sub graphs, thus creating two smaller sub problems, or to create one sub
region from all the cells in G (and cover the entire sub region under one sweep

DustBot FP6-045299 October 31, 2007

54/61

direction). If the graph is split, two (individually) connected sub graphs G1 and G2 are
created. These sub graphs together contain all the edges from G except those that
connect a node from G1 to a node in G2.

The minimum sum of altitudes is:

where i iterates over all possible ways to split the graph G into two connected sub
graphs and C(G) returns the cost of covering all cells corresponding to nodes in G as
one sub region. When there is only one node in the graph, S(G)=C(G).

The function C(G) must consider all the sweep directions under consideration to
determine the cost for covering the cells in G as a single region. For some (or possibly
all) coverage directions, this sub region may not be monotone, in which case the cost
is assigned, C(G) returns the minimum cost over all sweep directions under
consideration.

Figure 39 shows an example of the first level of decomposing a problem; Figure
40 shows the three line sweep decompositions and the optimal solution produced by
the MSA decomposition algorithm.

Figure 39: The top box shows a coverage region and the initial decomposition,

and the corresponding adjacency graph for the proposed MSA decomposition

algorithm. There are 8 ways that this graph can be decomposed into two

separate connected graphs, and the corresponding division of the coverage

region is shown. The rightmost choice represents covering all cells as a single

region.

DustBot FP6-045299 October 31, 2007

55/61

Figure 40: Figures (a) through (c) show the three line sweep decompositions of

this region. Figure (d) shows an optimal MSA decomposition produced by the

algorithm. The sum of sub region altitudes for Figures (a) through (d),

respectively, is 10, 7, 6.4, and 5.5.

To sum up, the basic approach is the decomposing of the coverage region into sub
regions, selecting a sequence of sub regions, and generating a coverage path that
covers each sub region in turn.

The MSA decomposition divides a coverage region into sub regions such that the
sum of sub region altitudes is minimized. Behind this criterion is the idea that sub
regions are covered with back and forth motion along rows perpendicular to the sweep
direction. The number of turns at the end of rows is the most important factor
affected by the orientation of the sweep direction. The number of turns is directly
related to the sub region altitude (with respect to the sweep direction).

An algorithm creates an initial decomposition by performing multiple line sweeps
and extending no convex edges. Dynamic programming is then used to group cells in
the initial decomposition into sub regions and to assign each sub region a sweep
direction.

DustBot FP6-045299 October 31, 2007

56/61

4 References

Andreasson, H., Triebel, R. and Lilienthal, A.J. “Vision Based Interpolation of 3D
Laser Scans”. Proceedings of the International Conference on Autonomous Robots and
Agents (ICARA), 2006.

Arkin, R. C., “Integrating behavioural, perceptual and world knowledge in reactive
navigation”. Robotics and Autonomous Systems 6, pp. 105-122, 1990.

Arkin, R., “Behavior-Based Robotics”. The MIT Press, 1999.

 Arsene, C.T.C. and Zalzala, A.M.S., “Control of Autonomous Robots Using Fuzzy
Logic Controllers Tuned by Genetic Algorithms”, Proceedings of the 1999 Congress on
Evolutionary Computation (CEC99), pp. 428-435, 1999.

Bahl, P. and Padmanabhan, V., “RADAR: An In-Building RF-Based User Location
and Tracking System” Proc. IEEE Infocom 2000, IEEE CS Press, Los Alamitos, Calif.,
pp. 775-784, 2000.

Bible, S.R., Zyda, M. and Brutzman, D., “Using Spread- Spectrum Ranging
Techniques for Position Tracking in a Virtual Environment” Second IEEE Workshop
Networked Realities, http://www.npsnet.org/~zyda/pubs/ NR95-Paper-Bible.pdf.

Borenstein, J. and Koren, Y., “Real-time Obstacle Avoidance for Fast Mobile
Robots”. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp.
1179-1187, 1989.

Borenstein, J. and Koren, Y., “The Vector Field Histogram – Fast Obstacle
Avoidance for Mobile Robots”. IEEE Journal of Robotics and Automation, Vol. 7, No. 3,
pp. 278-288, 1991.

Borenstein, J. and Feng, L., “Measurement and correction of systematic odometry
errors in mobile robots”, IEEE Transactions on Robotics and Automation 12, pp 869-
880, 1996.

Brown, R.G, “Introduction to random signal analysis and Kalman filtering”, John
Wiley and Sons, 1983.

Butler, Z., Rizzi, A., and Hollis, R., “Complete distributed coverage of rectilinear
environments”. In Fourth international workshop on the algorithmic foundations of
robotics, 2000.

Cazangi, R.R. and Figuieredo, M., “Simultaneous Emergence of Conflicting Basic
Behaviors and Their Coordination in an Evolutionary Autonomous Navigation System”,
Proc. 2002 IEEE Conf. on Evol. Comp. (CEC '02), IEEE, 2002.

DustBot FP6-045299 October 31, 2007

57/61

Choset, H., Acar, E., Rizzi, A., and Luntz, J., “Exact cellular decompositions in
terms of critical points of Morse functions”. In IEEE International Conference on
Robotics and Automation, 2000.

Computational Geometry Algorithms Library (CGAL). http://www.cgal.org/

Cox, I. J., “Blanche: Position estimation for an autonomous robot vehicle”,
Autonomous Mobile Robots: Control, Planning, and Architecture (Vol. 2), IEEE
Computer Society Press, Los Alamitos, CA, pp 285-292, 1991.

Darrell, T. et al., “Integrated Person Tracking Using Stereo, Color, and Pattern
Detection” Conf. Computer Vision and Pattern Recognition, IEEE CS Press, Los
Alamitos, Calif., pp. 601-608, 1998.

Di Gesu, V., Lenzitti, B., Lo Bosco, G. and Tegolo, D., “A Distributed Architecture
for Autonomous Navigation of Robots”, Proceedings Fifth IEEE International Workshop
on Computer Architectures for Machine Perception, pp.190 - 194, 2000.

Fernández, J. L. et al, “Improving collision avoidance for mobile robots in partially
known environments: the beam curvature method”. Robotics and Autonomous
Systems, Vol. 46, pp. 205-219, 2004.

Foley, J., Dam, A. V., Feiner, S., and Hughes, J., “Computer Graphics, principles
and practice”. Addison Wesley edition 2nd, 1990.

Fox, D. et al, “The Dynamic Window Approach to Collision Avoidance”. IEEE
Robotics and Automation Magazine 4 (1), pp. 23-33, 1997.

Fox, D., Burgard, W., and Thrun, S., “Markov localization for mobile robots in
dynamic environments”, Journal of Artificial Intelligence BIBLIOGRAPHY 141 Research
11, pp 391-427, 1999.

Gabriely, Y. and Rimon, E., “Spanning-tree based coverage of continuous areas by
a mobile robot”. Submitted to Annals of Mathematics and Artificial Intelligence.

Gallardo, D. and Colomina, O., “A Genetic Algorithm for Robust Motion Planing”,
Eleventh International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Castellon, Spain, June, pp. 115-121, 1998.

Goto, Y., Stentz, A., “Mobile Robot Navigation: The CMU System,” IEEE Expert,
Vol. 2, No. 4, Winter, 1987.

Harter, A. et al., “The Anatomy of a Context-Aware Application,” Proc. 5th Ann.
Int’l Conf. Mobile Computing and Networking (Mobicom 99), ACM Press, New York, pp.
59-68, 1999.

Hightower, J. and Borriello, G., "Location Sensing Techniques", UW CSE Technical
Report, 2001; available at:
www.cs.washington.edu/research/portolano/papers/UW-CSE-01-07-01.pdf

Hightower, J. and Borriello, G., "Location Systems for Ubiquitous Computing"
Computer, vol. 34, no. 8, pp. 57-66, 2001.

DustBot FP6-045299 October 31, 2007

58/61

Hightower, J., Want, R. and Borriello, G., “SpotON: An Indoor 3d Location Sensing
Technology Based on RF Signal Strength”, UW CSE 2000-02-02, Univ. Washington,
Seattle, 2000.

Hocaoglu, C. and Sanderson, A.C., "Planning Multiple Paths with Evolutionary
Speciation", IEEE Trans. Evolutionary Computation, vol. 5, no. 3, pp. 169-191, 2001.

Hwang, Y.K., Ahuja, N., “Gross Motion Planning – A Survey”, ACM Computing
Surveys, volume 24, issue 3, pp. 219-291, 1992.

Iida, S. and Yuta, S., “Vehicle Command System and Trajectory Control for
Autonomous Mobile Robots”, IROS ‘91, Osaka, Japan. IEEE Cat. No. 91TH0375-6,
1991.

Jarvis, R. A., “Collision-Free Trajectory Planning Using the Distance Transforms,”
Mechanical Engineering Trans. of the Institution of Engineers, Australia, Vol. ME10,
No. 3, 1985.

Jenke, P., Huhle, B. and Straßer, W. “Self-Localization in Scanned 3DTV Sets”, in:
3DTV CON - The True Vision, 2007.

Khatib., O., “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”.
1985 IEEE International Conference on Robotics and Automation, March 25-28, St.
Louis, pp. 500-505, 1985.

 Kubota, N., Morioka, T., Kojima, F. and Fukuda, T., “Perception-Based Genetic
Algorithm for a Mobile Robot with Fuzzy Controllers”, Proceedings of the 1999
Congress on Evolutionary Computation (CEC99), pp. 397-404, 1999.

Kurabayashi, D., Ota, J., Arai, T., and Yoshida, E., “Cooperative sweeping by
mobile robots”. In IEEE International Conference on Robotics and Automation, pages
1744.1749, 1996.

Krumm, J. et al., “Multi-Camera Multi-Person Tracking for Easy Living” Proc. 3rd
IEEE Int’l Workshop Visual Surveillance, IEEE Press, Piscataway, N.J., pp. 3-10, 2000.

Latombe, J.C., Robot motion planning, Kulwer Academic publishers, Boston, MA,
1991.

Lozano-Perez, T. and Wesley, M., “An algorithm for planning collision-Free paths
among polyhedral obstacles,” Communications of the ACM, vol.22, pp.560-570, 1979.

Lu, F. and Milios, E., “Robot pose estimation in unknown environments by
matching 2d range scans”. Intelligent and Robotic Systems, 18:249–275, 1997.

Lumelsky, V. J., Stepanov, A. A., “Dynamic Path Planning for a Mobile Automaton
with Limited Information on the Environment”, IEEE Transactions on Automatic
Control, Vol. AC- 31, No. 11, 1986.

McCleary, G. F. and Westbook, N., “Recreational and Recreational Mapping”,
Sturbridge Village, 1974.

DustBot FP6-045299 October 31, 2007

59/61

McFarland, D. and Bösser, T., “Intelligent Behaviour in Animals and Robots”, The
MIT Press, 1993.

Minguez, J., Osuna, J., and Montano, L., “A divide and conquer strategy to
achieve reactive collision avoidance in troublesome scenarios”. In International
Conference on Robotics and Automation, Minessota, USA, 2004.

 Minguez, J., Montesano, L., and Montano, L., “An Architecture for Sensor-Based
Navigation in Realistic Dynamic and Troublesome Scenarios”. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai,
Japan, 2004.

Minguez, J. and Montano, L., “Nearness Diagram (ND) Navigation: Collision
Avoidance in Troublesome Scenarios”. IEEE Transactions on Robotics and Automation,
Vol. 20, No. 1, pp. 45-59, 2004.

Montesano, L., Minguez, J., Montano, L., “Lessons Learned in Integration for
Sensor-Based Robot Navigation Systems”. International Journal of Advanced Robotic
Systems, Volume 3, no. 1, Pages 85-91, 2006.

Moravec, H. P. and Elfes, A., “High Resolution Maps from Wide Angle Sonar”. IEEE
Conference on Robotics and Automation, Washington D.C., pp. 116-121, 1985.

Nilsson, N. J., “Principles of Artificial Intelligence”, Tioga Publishing Company,
1980.

Obitko, M., “Genetic Algorithms”, Internet publication, 1998,
http://cs.felk.cvut.cz/~xobitko/ga/main.html

Orr, R.J. and Abowd, G.D., “The Smart Floor: A Mechanism for Natural User
Identification and Tracking,” Proc. 2000 Conf. Human Factors in Computing Systems
(CHI 2000), ACM Press, New York, 2000.

Pratihar, D.K., Deb, K. and Ghosh, A. “Fuzzy-Genetic Algorithms and Mobile Robot
Navigation among Static Obstacles”, Proceedings of the 1999 Congress on
Evolutionary Computation (CEC99), pp. 327-334, 1999.

Preparata, F.P. and Shamos, M.I., “Computational Geometry: An Introduction.”
Springer-Verlag. p198-257, 1985.

Priyantha, N.B., Chakraborty, A. and Balakrishnan, H., “The Cricket Location-
Support System,” Proc. 6th Ann. Int’l Conf. Mobile Computing and Networking
(Mobicom 00), ACM Press, New York, pp. 32-43, 2000.

Raab, F. et al., “Magnetic Position and Orientation Tracking System,” IEEE Trans.
Aerospace and Electronic Systems, pp. 709-717, 1979.

Ringbeck, T., Möller, T. and Hagebeuker, B. “Multidimensional measurement by
using 3-D PMD sensors”, Adv. Radio Sci., 5, 135–146, 2007.

Schone, H., “Spatial Orientation: The Spatial Control of Behaviour in Animals and
Man”, Princeton, NI: Princeton University Press, 1984.

DustBot FP6-045299 October 31, 2007

60/61

Simmons, R.G., “The curvature velocity method for local obstacle avoidance”.
Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 4,
pp. 2275-2282, 1996.

Sugihara, K. and Smith, J., “Genetic Algorithms for Adaptive Motion Planning of an
autonomous Mobile Robot”, Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Monterey, CA, pp. 138-146,
1997.

Technical Description of DC Magnetic Trackers, Ascension Technology Corp.,
Burlington, Vt., 2001.

Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D.,
Hofmann, T., Krell, M., and Schimdt, T.. ”Map learning and high-speed navigation in
RHINO”. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, AI-based Mobile
Robots: Case studies of successful robot systems. MIT Press, Cambridge, MA, 1998.

Thrun, S., Fox, D., Burgard, W. and Dellaert, F., “Robust monte carlo localization
for mobile robots” Artificial Intelligence 128,1- 2, pp 99-141, 2001.

Ulrich, I. and Borenstein, J., “VFH+: Reliable Obstacle Avoidance for Fast Mobile
Robots”. Proceedings of the 1998 IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 16-21, pp. 1572-1577, 1998.

Ulrich, I. and Borenstein, J., “VFH*: Local Obstacle Avoidance with Look-Ahead
Verification”. 2000 IEEE International Conference on Robotics and Automation, San
Francisco, CA, April 24-28, pp. 2505-2511, 2000.

Uribe, J. P. and Urzelai, J., “Fuzzy Controller for Obstacle Avoidance with a Non-
Holonomous Mobile Robot”. Mathware & Soft Computing, Vol. 5, pp. 279-289, 1998.

Vadakkepat, P. and Chen, T.K., “Evolutionary Artificial Potential Fields and Their
Application in Real Time Robot Path Planning”, Proceeding of the 2000 Congress on
Evolutionary Computation, San Diego, CA, pp. 256-264, 2000.

Want, R. et al., “The Active Badge Location System” ACM Trans. Information
Systems, pp. 91-102, 1992.

Xiao, J. and Zhang, L., “Adaptive Evolutionary Planner/Navigator for Mobile
Robots”, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 18-28,
1997.

Ye, C. and Borenstein, J., “Obstacle Avoidance for the Segway Robotic Mobility
Platform”. American Nuclear Society 10th International Conference on Robotics and
Remote Systems for Hazardous Environments, Gainsville, Fl, March 28-31, 2004.

Yuta, S., Suzuki, S. and Iida, S., “Implementation of a Small Size Experimental
Self-Contained Autonomous Robot”, Proceedings of the 2nd Int. Symposium on
Experimental Robotics, 1991.

DustBot FP6-045299 October 31, 2007

61/61

Zelinsky, A., Jarvis, R. A., Byrne, J. C. and Yuta, S., “Planning paths of complete
coverage of an unstructured environment by a mobile robot”. International Journal of
Robotics Research, 13(4):315. 1994.

